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ABSTRACT

  

In this paper we discuss the flow and heat transfer in a circular duct bounded by a 

porous bed. The entire flow region is divided into two zones. Zone 1 consisting of clean fluid 

and Zone 2 consisting of porous bed. The clean fluid region is governed by Navier-Stokes 

equations while the Brinkman extended Darcy model has been used in the flow through 

porous bed. In either zones the momentum and temperature equations are coupled and in 

particular the equations in the porous region are non-linear coupled equations. In order to 

obtain a better incite into this complex problem we make use of Galarkian finite element 

analysis with quadratic polynomial approximations. The Galarkian finite element analysis has 

two important features, Firstly, the approximation solution is written directly as a linear 

combination of approximation functions with unknown nodal values as coefficients. 

Secondly, the approximation polynomials are chosen exclusively from the lower order 

piecewise polynomials restricted to contiguous elements. The behavior of the velocity and 

temperature is analyzed at different axial positions. The shear stress and the rate of heat 

transfer have also been obtained for variations in the governing parameters.           

1 .INTRODUCTION

  

Convective heat transfer in channels partially filled with porous media has gained 

considerable attention in recent years because of its various applications in contemporary 

technology.  These applications include porous journal bearing, nuclear reactors, porous flat 

plate collectors, packed bed thermal storage, solidification of concentrated alloys, fibrous and 

granular insulation, grain storage and drying, paper drying, and food storage.  Besides, the 

use of porous substrates to improve forced convection heat transfer in channels, which is 

considered as a composite of a fluid and porous layers, finds applications in heat exchangers, 

chemical reactors, etc.Using the simple Darcy model, the fluid mechanics at the interface 

between the fluid layer and a porous medium over a flat plate was first investigated by 

Beavers and Joseph [1].   Later, this problem was investigated by Vafai and Thiyagaraja [7] 

analytically and obtained an approximate solution based on matched asymptotic expansions 

for the velocity and temperature distributions. Vafai and Kim [5] presented an exact solution 
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for the same problem.  Excluding the microscopic inertial term, closed form analytical 

solutions for parallel plates and circular pipes partially filled with porous materials were 

obtained by Poulikakos and Kazmierczak [4] for constant wall heat flux, while numerical 

results were computed for constant wall temperature.  Jang and Chen [3] investigated the 

problem of forced convection in a parallel plate channel partially filled with a porous material 

numerically. They used the Darcy- Brinkamann-Forchheimer model to derive the flow with 

in porous material.         

Vafai & Kim [6] studied the interactions between the porous medium and the clear fluid 

simulated by the Darcy-Brinkman-Forchheimer formulation and the continuity of velocity 

and stresses at the interface and discussed the effects of several parameters, such as the 

porous layer thickness, the system configuration, Forchheimer coefficient, and Darcy 

number. The study includes the effects of these parameters on the transient thermal behavior 

of the channel under consideration. 

  Keeping above mentioned fact in view we discuss the flow and heat transfer in a 

circular duct bounded by a porous bed. The entire flow region is divided into two   zones. 

Zone 1 consisting of clean fluid and Zone 2 consisting of porous bed. The clean fluid region 

is governed by Navier-Stokes equations while the Brinkman extended Darcy model has been 

used in the flow through porous bed. In either zones the momentum and temperature 

equations are coupled and in particular the equations in the porous region are non-linear 

coupled equations. In order to obtain a better incite into this complex problem we make use 

of Galarkian finite element analysis with quadratic polynomial approximations. The 

Galarkian finite element analysis has two important features, Firstly, the approximation 

solution is written directly as a linear combination of approximation functions with unknown 

nodal values as coefficients. Secondly, the approximation polynomials are chosen exclusively 

from the lower order piecewise polynomials restricted to contiguous elements. The behavior 

of the velocity and temperature is analyzed at different axial positions. The shear stress and 

the rate of heat transfer have also been obtained for variations in the governing parameters.            

2 .FORMULATION OF THE PROBLEM

          

We consider free and forced convection flow in a vertical circular cylinder through a 

composite medium consisting of a clean fluid bounded by a coaxial porous matrix abutting 

the rigid cylindrical wall maintained at a constant temperature.  The flow and temperature in 

the clean fluid (non porous) and porous regions are assumed to be fully developed.  Both the 

fluid and porous region have constant physical properties and the flow is a mixed convection 
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flow taking place under thermal buoyancy and uniform axial pressure gradient.  The 

boussenissq approximation is invoked so that the density variation is confined to the thermal 

buoyancy force. The flow in the clean fluid region is governed by Navier - Stokes equations, 

while the Brinkman – Forchhimer – Extended Darcy model which accounts for the inertia 

and boundary effects has been used for the momentum equation in the porous region. The 

clean fluid region is refer to as zone-1 and the porous region referred as zone-2. In both zone 

the momentum and energy equations are coupled and in particular the equation in the porous 

region is non-linear coupled equations.  Also the flow in either zone is unidirectional along 

the axial direction of the cylinder.  Making use of the above assumptions the governing 

equations the clean fluid region are 
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Where u is the velocity component of axial direction, T is a temperature of the fluid, p 

is pressure, 

 

is the density of the fluid, k is permeability, cp is specific heat at a constant 

temperature,

 

is coefficient of thermal conductivity, 

 

is the co-efficient of thermal 

expansion. 0  and 0T are the equilibrium density and temperature. 

The corresponding equations in porous region are 
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Where up is the axial velocity in the porous region, pT  is the temperature of the fluid, k is 

permeability of medium, F is a function that depends on Reynolds number and the 

microstructure of the porous medium. 

In zone-1 is the view of the symmetry with reference to the mid axis of the circular duct the 

symmetric condition are. 
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The boundary conditions relevant to the zone-2 are  

u=0 & T=T1     at      r=a+s                                                                                        (2.7)                  

In addition to these the following matching conditions at the fluid porous interface  

r= a are 
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The conditions (2.8) correspond to the continuity of the velocity and shear stress at 

the interface whereas the (2.9) corresponds continuity of the temperature and heat flux at the 

interface. 

Introducing suitable non-dimensional variables in the governing equations in the non-

dimensional form are (on removing the stars) 
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 Similarly the equations related to Zone-2 )11( sr
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The corresponding non dimensional conditions are 
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The interfacial conditions are 
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3. FINITE ELEMENT ANALYSIS

           

The finite element analysis with quadratic polynomial approximation functions is 

carried out along the radial distance across the circular duct.  The behavior of the velocity and 

temperature profiles has been discuss computationally for different variation in governing 

parameters. The Gelarkin method has been adopted in the variational formulation in each 

element to obtain the global coupled matrices for the velocity and temperature in course of 

the finite element analysis. 

Zone -1 )10( r 

Choosing different Lagranges quadratic polynomials  k
j 3,2,1

 

corresponding to each 

element ke in zone-1 the local stiffness matrix of order 3x3 in term of local nodal values for 

the velocity in the form. 
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Likewise local stiffness matrix of order 3x3 in term of local nodal values for the temperature 

in the form. 

)()()()()()( 12
k

j
k

j
k
i

k
jir

k
i

k
ji RRudPNc                                                                           (3.2) 

Where )( k
jia , )( k

jib , )( k
jic & )( k

jid are 3x3 matrices. And )( 1
k
jQ , )( 2

k
jQ , )( 1

k
jR , )( 1

k
jR & )( 1

k
j

 

are 

3x1 column matrices and rdrP
B

A

r

r

k
j

k
j

1

1

.  

Repeating the process with each of element ke we obtain corresponding local stiffness 

matrices.  These stiffness matrices are than assembled making use of inter element continuity 
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and equilibrium conditions to obtain the coupled global matrices for u &

 
in terms of global 

nodal values of u &

 
in zone -1. If the number of quadratic elements is chosen as n then the 

matrix will be order 2n+1. 

Zone-2  )11( sr

 
Choosing different Lagranges polynomials  s'k

pj  corresponding to each element ke  in zone-

2 the local stiffness matrix of order 3x3 for the velocity in the form  
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jpR  are 3x1 column matrices . 

          Such stiffness matrices (3.3) & (3.4) in terms of local nodes in each element are 

assembled using interelement continuity and equilibrium conditions to obtain the coupled 

global matrices in terms of the global nodal values of ppu & in zone-2. In case we choose n 

quadratic elements then the global matrices are of order 2n+1. The coupled global matrices 

corresponding to zone-1 and zone-2 are again assembled using interface continuity conditions 

at the porous – non porous interface as well as the symmetric and boundary conditions.  The 

ultimate coupled global matrices are solved to determine the unknown global nodal values of 

the velocity and temperature in both the clean fluid and porous regions.  In solving these 

global matrices an iteration procedure has been adopted to include the boundary & effects in 

the porous region. 

          In fact, the non-linear term arises in the modified Brinkman linear momentum equation 

of the porous medium.  The iteration procedure in taking the global matrices as follows.  We 

split the square term into a product term and keeping one of them say sU pi ' under 

integration, the other is expanded in terms of local nodal values and the resulting in the 

corresponding co-efficient matrix ( snk
ji ' ) in (3.3), whose coefficients involve the unknown 

sU pi ' .  To evaluated (3.3) to begin with choose the initial global nodal values of sU pi ' as 

zeros in the zeroth approximation. We evaluate su pi ' and spi '
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mentioned earlier.  Later choosing these values of su pi ' as first order approximation 

calculate spi ' .  In the second iteration, we substitute for sU pi ' the first order approximation 

of su pi ' and the first approximation of and spi ' obtain second order approximation.  This 

procedure is repeated till the consecutive values of su pi ' and spi '

 
and differ by a 

preassigned percentage. For computational purpose we choose five elements in each zone.   

Assembling the local stiffness matrices and using interelement continuity conditions in zone-

1.   The global matrix for  in zone 1 is                111 BXA                                               (3.5) 

The global matrix for u in zone -1 is                      222 BXA                                            (3.6)  

Similarly the global matrix for p in zone-2 is      333 BXA                                           (3.7) 

The global matrix for pu  is                                     444 BXA                                          (3.8) 

4321 A  andA A ,A are constant coefficient matrices of order 11x11 and  

43214321 B&B,B,B,X,X,X,X are 11x1 column matrices.  

We make use of the following interfacial and equilibrium conditions in term of global nodes 

are   

111 puu & 
111 p                                                                                                             (3.9)   

The equilibrium conditions are   
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The boundary conditions are  

0)( 111 srpp uu  &  1)( 111 srpp                                                                         (3.11)   

Assembling the temperature global matrices (3.5) in zone-1 and (3.7) in zone-2. 

 We obtain           555 BXA                                                                                              (3.12) 

Similarly assembling global matrices for velocity (3.6) in zone-1 and (3.8) in zone-2   we 

obtain                  666 BXA                                                                                               (3.13) 

Where 65 & AA  are 21x21 square matrices 6565 B&B,X,X  are 21x1 column matrices.    
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Solving these ultimate coupled global matrices for temperature and velocity (3.12) & (3.13) 

respectively and using the iteration procedure, we determine the unknown global nodes 

through which the temperature and velocity at different radial intervals at any arbitrary axial 

cross section are obtained. The respective expressions are given bellow 
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4. DISCUSSION

  
The velocity and temperature profiles, the shear stress and nusselt number are 

evaluated for variations in the governing parameters 1D , G and s at an arbitrary axial 

position of the circular duct. The influence of the thickness of the porous bed on the velocity, 

temperature in porous and clean fluid regions on the rate of heat transfer is also investigated. 

The different profiles for the variations in the governing parameters are drawn in Fig.1 – 10.  

The velocity gradually reduces from its maximum attain on the mid axis of the duct to 

zero on the outer boundary in accordance with no – slip condition. We may note that, the 

thickness of the porous lining significantly affects the velocity and temperature in both the 

regions. Infact, for sufficiently large thermal buoyancy parameter ( 210G ), for an increase 

in the thickness of the porous bed, the magnitude of the velocity and temperature steeply 

enhances both in the clean fluid and the porous regions. In view of the non-

dimensionalization the actual velocity may be obtained by scaling the non dimensional 

velocity by 210 . The actual axial velocity is vertically downwards in view of the imposed 

pressure gradient chosen to be positive. Any upward flow corresponds to a reversal flow.   

Figs.1 – 2 corresponds to variation of the velocity with reference to G and 1D

 

respectively, when the thickness of the porous bed‘s’ is small. Figs.3 – 4 correspond to the 

respective velocity profiles, when the thickness of the porous bed is large. 
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Fig1.   Velocity u with G variation   P=1 7rP   N=0.5   d=0.001  31 101xD  s=0.2 
       I          II             III            IV 
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Fig2.   Velocity u with G variation        P=1 7rP   N=0.5   d=0.001  50G  s=0.2 
     I          II             III            IV 

                                         1D    310     2x 310      3x 310        4x 310 
From fig 1 we notice that when s is small an increase in the thermal buoyancy parameter G 

gradually reduces the axial velocity at all corresponding points in the fluid region (both clean 

and porous regions). Also from Fig 2, an increase in 1D reduce the velocity in the clean fluid 

and slightly enhances the same in the porous bed. Thus as the permeability of the thin porous 

bed reduces, the fluid in the clean region moves with the lesser velocity. In contrast to this, 

when the thickness of the porous bed is large the axial velocity reduces with an increase in G 

through lower values ( 210G ).  
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Fig3.   Velocity u with G variation    P=1 7rP   N=0.5   d=0.001  31 101xD  s=0.6   
       I          II             III            IV 
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Fig4.   Velocity u with 1D  variation       P=1 7rP   N=0.5   d=0.001  50G   s=0.6 
      I          II             III            IV 

                                          1D    310     2x 310      3x 310       4x 310 
However when G enhances the velocity changes its direction and the magnitude steeply rises 

and higher the value of G greater the velocity. We also find that the velocity profiles are 

asymmetric parabolic with maximum attained at r=0.4 (Fig.3). Fig.4 corresponds to the 

variation in the velocity with reference to 1D and we find that an increase in 1D

 

through 

relatively small values ( 21 10x3D ) abruptly enhances the magnitude, which once again 

reduces for further an increase in 1D . However the magnitude of the velocity once again 

sharply rises for further increase in 1D . 
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Fig5.Temperature  with G variation P=1 7rP  N=0.5 d=0.001  31 101xD  s=0.2  
     I          II             III             IV 
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Fig6.Temperature  with 1D  variation P=1 7rP  N=0.5 d=0.001 31 101xD s=0.2 
     I          II             III           IV 

                                           1D    310     2x 310      3x 310       4x 310 
The behavior of the non- dimensional temperature in case of different thickness of the porous 

bed may be observed Figs 5-8. In the case of thin porous bed, the temperature enhances in 

magnitude is the core fluid region (0<r<0.4) while reduces in the remaining fluid region 

including the porous bed, for an increase in G, keeping other parameters fixed (Fig5). The 

temperature slightly enhances in the entire region for an increase in 1D . In other words, 

lesser the permeability of the porous medium higher the temperature in the fluid region 

(Fig6). 
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Fig7. Temperature  with G variation P=1 7rP  N=0.5 d=0.001 31 101xD  s=0.6     
    I          II             III            IV 
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Fig8.Temperature  with 1D

 

variation P=1 7rP  N=0.5 d=0.001 31 101xD  s=0.6      

      I          II             III           IV 
                                           1D    310     2x 310      3x 310       4x 310 
In case of porous bed of larger thickness, the temperature reduces for an increase in G 

through smaller values ( 210G ). Further an increase in G enhances the temperature at all 

corresponding points in the region (Fig7).A similar behavior is noticed with variation in 1D

 

(Fig8).  
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Fig9.Velocity u with s variation P=1 7rP  N=0.5 d=0.001 G=50 31 101xD s=0.6 
                                                         I          II          III 
                                            s          0.2       0.4        0.6 
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Fig10 Temperature  with s variation 
P=1 7rP   N=0.5 d=0.001 G=50  31 101xD  s=0.6 

    I          II         III 
                                                   s          0.2       0.4        0.6 
Fig 9 indicates the variation in the velocity with enhancement of the thickness of the porous 

bed of the higher permeability. As pointed earlier, the fluid moves with enhanced velocity for 

increase in the thickness. Likewise, the temperature also enhances at all corresponding points 

in the entire region for an increase in thickness of the porous bed (Fig10). 

                           Table-1                                                                Table-2                                  

Shear Stress at the outer cylinder r=1+s                  Shear Stress at the outer cylinder r=1+s 
(P=1 7rP N=0.5 d=0.001 31 10D  s=0.6 )      (P=1 7rP  N=0.5  d=0.001 G=50   s=0.6) 

         

The shear stress is evaluated on the outer cylinder for different variations in the parameters 

and tabulated in tables 1 and 2. For smaller thickness of the porous bed an increase in G 

reduces the shear stress (Table1). For sufficiently large thickness the shear stress reduces with 

G for an increase through smaller values ( 210G ). But for further increase in G, the stress 

becomes negative and higher in magnitude. This is true for all large thickness of the bed. The 

changes in sign of the shear stress indicate the appearance of the reversal flow for higher 

values of G. From table-2 we notice that fixing G an increase in D-1 enhances the stresses for 

all thickness of the bed.     

G= 50 100 150 
s=0.4 1.9219 1.28889 0.861998 
s=0.5 1.60712 1.12935 -76.7714 
s=0.6 1.52836 1.05256 -574586 

1D

 

   310 310x2 310x3 

s=0.4 1.83228

 

1.95451

 

2.09058

 

s=0.5 1.76881

 

1.95876

 

2.18527

 

s=0.6 1.75517

 

2.04408

 

2.41734
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                           Table-3                                                                Table-4                                  

Nusselt number at the outer cylinder r=1+s           Nusselt number at the outer cylinder r=1+s 
(P=1 7rP  N=0.5 d=0.001 31 10D  s=0.6)      (P=1 7rP  N=0.5 d=0.001 G=50   s=0.6) 

         

The rate of heat transfers for variation in s and 1D

 

has been obtained and tabulated in tables 

3 & 4. For lower values of G reduces nusselt number for all thicknesses (Table3) but when G 

is large, Nu increases in magnitude. We also notice that higher the thickness of the bed lower 

the rate of heat transfer for all variations in G and 1D

 

(table 3). From table 4, we conclude 

that lesser the permeability of the medium higher the rate of heat transfers for all the values 

of s and G.   
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G= 50 100 150 
s=0.4 79.2557 78.0147 137.0802 
s=0.5 63.8268 62.664 129.097 
s=0.6 53.5265 52.3946 88.6656 

1D

 
   310 310x2 310x3 

s=0.4 79.6192

 
80.0218

 
80.47 

s=0.5 64.3529

 

64.9709

 

65.7072

 

s=0.6 54.2558

 

55.1831

 

56.3791
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