# ДИНАМИКА ТЕПЛО- И МАССОПЕРЕНОСА ПРИ СУШКЕ КАПИЛЛЯРНО-ПОРИСТОГО ЦИЛИНДРИЧЕСКОГО ТЕЛА КОНЕЧНОЙ ДЛИНЫ

## Сороковая Н.Н.

## Институт технической теплофизики <u>ntps@bk.ru</u>

Излагается методика численного исследования двухмерных задач тепломассопереноса и фазовых превращений при обезвоживании капиллярно-пористых тел цилиндрической формы конечной длины. Представлены результаты расчетных и экспериментальных данных.

#### Ключевые слова:

Математическое моделирование, капиллярно-пористое тело, численные методы.

На практике нередко возникает необходимость расчета динамики сушки двухмерных и трехмерных тел. Основные особенности моделирования пространственных задач сушки проявляются при решении их в двухмерной постановке. Ниже излагается методика моделирования динамики сушки в капиллярно-пористом теле, имеющем форму конечного цилиндра, которая базируется на разработанных ранее математических моделях [1].

Рассмотрим капиллярно-пористое цилиндрическое тело, поры которого заполненные жидкостью и парогазовою смесью. Будем обозначать влагу в виде жидкости и пара соответственно индексами ж и п, воздух – в, скелет тела – индексом т. При обдувании тела сушильным агентом с температурой  $T_c \leq 100^{\circ}$  С, когда фильтрацией и термодиффузией компонентов можно пренебречь, тепломассоперенос осуществляется диффузионным путем вследствие хаотичного движения молекул. Тогда дифференциальные уравнения массопереноса жидкости и пара и переноса энергии для системы в целом с учетом формулы для интенсивности испарения жидкости в порах тела приведенного в [2], имеют следующий вид:

$$\frac{\partial U_{*}}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left( D_{*} r \frac{\partial U_{*}}{\partial r} \right) + \frac{\partial}{\partial y} \left( D_{*} \frac{\partial U_{*}}{\partial y} \right) - \gamma_{V} \left[ \exp\left(\frac{A}{RT}\right) - 1 \right]^{-1} (1 - \varphi), \qquad (1)$$

$$\frac{\partial U_{\pi}}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left( D_{\pi} r \frac{\partial U_{\pi}}{\partial r} \right) + \frac{\partial}{\partial y} \left( D_{\pi} \frac{\partial U_{\pi}}{\partial y} \right) + \gamma_{V} \left[ \exp\left(\frac{A}{RT}\right) - 1 \right]^{-1} (1 - \varphi), \qquad (2)$$

$$c_{3\phi}\frac{\partial T}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left(\lambda_{3\phi}r\frac{\partial T}{\partial r}\right) + \frac{\partial}{\partial y}\left(\lambda_{3\phi}\frac{\partial T}{\partial y}\right) - L\gamma_{V}\left[\exp\left(\frac{A}{RT}\right) - 1\right]^{-1}(1-\phi).$$
(3)

Здесь  $U_{x}$ ,  $U_{n}$  – объемные концентрации жидкости и пара; T – температура; t – время; L – удельная теплота парообразования при данном влагосодержании тела;  $c_{3\phi}$  – эффективная теплоемкость,  $c_{3\phi} = c_{T}U_{T} + c_{x}U_{x} + c_{n}U_{n} + c_{B}U_{B}$ ;  $\lambda_{3\phi}$  – эффективная теплопроводность,

 $\lambda_{3\phi} = \lambda_{T}U_{T}/\rho_{T} + \lambda_{\#}U_{\#}/\rho_{\#} + \lambda_{\Pi}U_{\Pi}/\rho_{\Pi} + \lambda_{\#}U_{\#}/\rho_{\#}; \quad \gamma_{V}$  – объемный коэффициент интенсивности испарения,  $\varphi$  – относительная влажность газа в порах тела,  $\varphi = U_{\Pi}/[\Psi_{\Gamma}P_{\Pi}(T)], \quad \Psi_{\Gamma} = 1 - \Pi - \Psi_{\#}, \quad \Pi$  – пористость тела,  $\Psi_{\Gamma}, \Psi_{\#}$  – объемные доли газа и жидкости,  $P_{\Pi}$  – давление насыщенного пара;  $D_{\#}, \quad D_{\Pi}$  – эффективные коэффициенты диффузии жидкости [3] и пара,  $D_{p} = \gamma_{D} [\exp(A_{D}/RT) - 1]^{-1}, \quad D_{\Pi} = \gamma_{\Pi}T^{3/2}/P_{\Gamma}; \quad A, \quad A_{D}$  – энергии активации молекул жидкости для процессов испарения и диффузии; R – удельная газовая постоянная;  $\gamma_{D}, \quad \gamma_{\Pi} = \text{ const.}$  При отсутствии фильтрации давление парогазовой смеси  $P_{\Gamma}$  в порах тела равняется давлению окружающей среды.

Граничные условия для уравнений (1)-(3) можно представить в следующем виде

$$D_{*} \frac{\partial U_{*}}{\partial v}\Big|_{v=0} = \gamma_{c} \left\{ \left[ \exp\left(\frac{A}{RT}\Big|_{v=0}\right) - 1 \right]^{-1} - \varphi_{c} \left[ \exp\left(\frac{A}{RT_{c}}\right) - 1 \right]^{-1} \right\},$$
(4)

$$-D_{\pi} \frac{\partial U_{\pi}}{\partial \nu}\Big|_{\nu=0} = \gamma_{c\pi} \Big( U_{\pi} \Big|_{\nu=0} - \rho_{\pi c} \psi_{\pi} \Big), \tag{5}$$

$$\lambda_{3\phi} \frac{\partial T}{\partial \nu}\Big|_{\nu=0} = \alpha (T_{c} - T\Big|_{\nu=0}) - L\gamma_{c} \left\{ \left[ \exp\left(\frac{A}{RT\Big|_{\nu=0}}\right) - 1 \right]^{-1} - \varphi_{c} \left[ \exp\left(\frac{A}{RT_{c}}\right) - 1 \right]^{-1} \right\}.$$
 (6)

где γ<sub>c</sub> – поверхностный коэффициент интенсивности испарения; *ν* – нормаль к поверхности тела; φ<sub>c</sub> – степень насыщения внешней парогазовой среды.

Численная реализация системы (1) – (3) проводится на основе трехслойной явной разностной схемы [4], которая характеризуется простотой, свойственной явным схемам, и позволяет, как для неявных схем, выбирать практически произвольно шаги разностной сетки. Разностная аппроксимация уравнения (1) в цилиндрических координатах на сетке  $r_i = R_{\rm BH} + ih(i = 0, 1, ..., h = {\rm const},$  внутренний радиус  $R_{\rm BH} \ge 0$ ),  $y_m = mh_y$ ,  $(m = 0, 1, ..., h_y = {\rm const})$ ,  $t_n = nl$   $(n = 0, 1, ..., l \ge 0)$  в соответствии с указанной схемой имеет вид

$$\left(1 + \Omega_{*}\right) \frac{U_{*im}^{n+1} - U_{*im}^{n}}{l} - \Omega_{*} \frac{U_{*im}^{n} - U_{*im}^{n-1}}{l} = \frac{1}{2r_{im}h^{2}} \left[ \left( D_{*}_{*i+1,m}r_{i+1,m} + D_{*}_{im}r_{im} \right) \left( U_{*}^{n}_{*i+1,m} - U_{*}^{n}_{*im} \right) - \left( D_{*}_{*im}r_{im} + D_{*}_{*i-1,m}r_{i-1,m} \right) \left( U_{*}^{n}_{*im} - U_{*}^{n}_{*i-1,m} \right) \right] / h^{2} + \left[ \left( D_{*}_{*i,m+1} + D_{*}_{*im} \right) \left( U_{*}^{n}_{*i,m+1} - U_{*}^{n}_{*im} \right) - \left( 0 \right) \right]$$

$$\left( D_{*}_{*im} + D_{*}_{i,m-1} \right) \left( U_{*}^{n}_{*im} - U_{*}^{n}_{*i,m-1} \right) \right] / h^{2}_{y} - \gamma_{V} \left[ \exp \left( \frac{A}{R_{y}T} \right) - 1 \right]^{-1} (1 - \varphi) \, .$$

Весовой параметр разностного уравнения Ω<sub>ж</sub>≥ 0 устраняет ограничение на шаг по времени. Его значение выбирается после построения разностной сетки исходя из условия устойчивости  $l \le (1 + 2\Omega_{*})/[2(1/h + 1/h_{y})]$ . Расчетный шаг по времени l определяется из условия  $l \le \{l_{x}; l_{*}; l_{*}\}$ .

В результате численного решения системы (1) – (3) при граничных условиях (4) – (6) определялись нестационарные поля температуры, объемной концентрации жидкости и пара, а также кинетические характеристики процесса сушки капиллярно-пористого керамического тела, которое имеет форму сплошного и полого цилиндра с толщиной стенки  $\delta_{c\tau} = R_{hap} - R_{BH} = 0,01$  м и высотой Y = 0,02 м. Внутренний радиус  $R_{BH}$  варьировался. Сушка производилась нагретым воздухом. Расчеты проводились при следующих исходных значениях параметров:  $T_0=20$  °C;  $w_c=3,5$  м/с;  $d_c=8$  г/кг с. в.;  $P_c=0,981\cdot10^5$  Па;  $U_0=260$  кг/м<sup>3</sup>;  $W_0=0,13$  кг/кг;  $\Pi=0,27$ ;  $\lambda_{r}=0,78$  Вт/(м·К);  $c_{r}=790$  Дж/(кг·К);  $\rho_{r}=2629$  кг/м<sup>3</sup>;  $\phi_c=0,1045$ ;  $\alpha=26$  Вт/(м<sup>2</sup>·К);  $\gamma_D=1,3\cdot10^{-9}$  м<sup>2</sup>/с,  $\gamma_{\pi}=0,58\cdot10^{-6}$  H/(с·К<sup>3/2</sup>);  $A = A_D = 0,4205\cdot10^8$  Дж/кмоль. Коэффициенты тепло- и масообмена на внешней поверхности цилиндра принимались одинаковыми.

На рис. 1(а) изображено распределение концентрации жидкости в осевом сечении керамической цилиндрической стенки тела, когда  $R_{\rm BH} = \delta_{\rm cr}$ , в разные моменты времени. С уменьшением  $R_{\rm BH}$  отвод выпаренной влаги от внутренней поверхности цилиндрического тела усложняется, что приводит к еще большему нарушению симметрии изолиний объемной концентрации относительно вертикальной оси, а также к увеличению продолжительности сушки.



Рис. 1. Изолинии объемной концентрации жидкости в стенке цилиндрического керамического тела с внутренним радиусом  $R_{\rm BH}$  в разные моменты времени.  $T_{\rm c}$ = 50 °C.

На рис. 1(б) представлены изолинии объемной концентрации жидкости в разные моменты времени, когда внутренний радиус  $R_{\rm BH}$  существенно превышает другие размеры тела. При таких условиях изолинии являются симметричными относительно осей симметрии сечения.

Численные эксперименты показали, что при  $2R_{\text{нар}}/Y > 6$  время сушки сплошного цилиндра с увеличением  $R_{\text{нар}}$  меняется не существенно, и практически совпадает с продолжительностью сушки бесконечной пластины толщиной *Y*.

На рис. 2. представлены графики изменения среднего влагосодержания для керамического тела в форме сплошного цилиндра с размерами  $R_{\rm hap} = 0,04$  м и Y = 0,012 м, найденный в результате расчета на базе представленной выше математической модели, и в форме бесконечной пластины толщиной Y = 0,012 м, полученный экспериментальным путем. Результаты численного и физического моделирования довольно хорошо согласовываются, что свидетельствует об адекватности представленной методики расчета



Рис. 2. Изменение в времени среднего влагосодержания W при сушке керамических сплошного цилиндра и бесконечной пластины теплоносителем с параметрами  $T_c=50$  °C;  $w_c=3.5$  м/с;  $d_c=8$  г/кг с. в.

На рис.3 представленные графики изменения температуры T (а) и избыточной объемной концентрации жидкости  $U_{\pi} - U_{p}$  (б), где  $U_{p}$  – равновесное значение, в характерных точках среднего сечения по высоте сплошного цилиндра с размерами  $R_{\text{нар}} = 0,01$  м и Y = 0,02 м. Обезвоживание осуществлялось теплоносителем с параметрами  $T_{c} = 70$  °C;  $w_{c} = 3,5$  м/с;  $d_{c} = 8$  г/кг сухого воздуха. Максимальные перепады температуры и объемной концентрации жидкости в теле наблюдаются в первом периоде сушки. Для керамических изделий этот период является наиболее опасным с точки зрения трещинообразования. Определение

параметров теплоносителя, при которых градиенты температуры и концентрации жидкости не превышают предельно допустимых значений для глин данного месторождения позволит избежать возникновения трещин при сушке и обжиге керамических изделий.



б)

Рис.3. Графики изменения температуры (а) и избыточной объемной концентрации жидкости (б) в характерных точках среднего сечения по высоте сплошного цилиндра.

# Выводы

Сопоставление результатов численного моделирования с полученными экспериментальными данными свидетельствует о возможности использования представленной методики для расчета динамики тепло- и массопереноса при сушке капиллярно-пористых систем с целью выбора оптимальных технологических параметров процесса.

#### Литература

1. Никитенко Н.И., Снежкин Ю.Ф., Сороковая Н.Н. Математическая модель и метод расчета тепломассопереноса и фазовых превращений в процессах сушки. // Пром. теплотехника. – 2001.–Т. 23. № 3. –С. 65–73.

2. Никитенко Н.И., Снежкин Ю.Ф., Сороковая Н.Н. Математическая модель и метод расчета тепломассопереноса, фазовых превращений и усадки в процессах сушки. //Доп. НАН України.– 2002. – №9. – С.81 – 89.

3. Никитенко Н.И. Проблемы радиационной теории тепло - и массопереноса в твердых и жидких средах. Инж.-физ. журн.// – 2000. – Т. 73. – № 4. – С. 851 – 860.

4. Никитенко Н.И.Теория тепломассопереноса. Киев: Наук. думка, 1983. – 352 с.