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According to [1] equally with passive thermal heat protection systems (PTHPS) the active 
heat protection systems (ATHPS) take place. A combined usage’s characteristics of ATHPS 
and PTHPS for three dimensional hypersonic flows around spherically blunted cone at 
atmosphere entry by using into account conjugate heat and mass transfer were studied. This 
body consists of a spherical blunted porous part from Fe or Cu materials and conical part from 
graphite material. The hypersonic entry of blunting body with velocity less than first cosmic 
one are considered. For heights below 30 km within shock layer the model of chemically 
equilibrium air [2] consisting from 6 components  are used. A 
chemically no equilibrium boundary layer equations system are known from [3]. It takes into 
account next system of no equilibrium homogeneous chemical reactions:  

ArNONNOO ,,,,, 22

MNMN +↔+ 2)1 2 , MOMO +↔+ 2)2 2 , MONMNO ++↔+)3 , 
MCMC +↔+ 12 2)4 , MCCMC ++↔+ 213)5 , MOCMCO ++↔+ 1)6 , 

MOCOMCO ++↔+2)7 , MNCMCN ++↔+ 1)8 , 
NOONO +↔+ 2)9 , NNOON +↔+2)10 , 12)11 COOCO +↔+ , 

NOCNCO +↔+ 1)12 , OCCCO +↔+ 32)13 , 213 2)14 CCC ↔+ , 
OCCCO +↔+ 21)15 , NOCNCON +↔+2)16 , 2)17 OCNCONO +↔+ , 

NOCCOCN +↔+ 2)18 , OCNNCO +↔+)19 , NOCOCN +↔+ 1)20 , 
NCNCN +↔+ 12)21 , NCCCN +↔+ 21)22 , 122)23 CCOCO +↔ , 

COOOCO +↔+ 22)24 , 2)25 CONNOCO +↔+ ,  222)26 OCCO +↔
 
For porous spherical blunting an equation [4] are considered. It takes into account one 
dimensional filtration flow of refrigerating air on normal to body surface from internal cavity 
by using a nonlinear Darcy law [5] and pressure’s assignment for air cavity. An integration of 
gas movement’s equation for pores results in next dependence for refrigerating air outflow 
[6]: 
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For conical part a three dimensional equation [7,8] are considered. It takes into account next 
system of nonequilibrium heterogeneous chemical reactions [8,9]: 



22)1 COOC →+ , ,COOC 22)2 2 →+ COOC →+)3 , COCOC 2)4 2 →+ ,  

OCOOC +→+ 2)5 , COCOO +→++ 2)6 , CNCNN +→++ 2)7 ,  

CONCNO ++→+ 222)8 , 1)9 CC ↔ , 2)10 CC ↔ ,  3)11 CC ↔

Initial and boundary conditions [3,9] were used. For description of turbulent flow around 
body Cebeci–Smith turbulent model [10] were applied. Above mentioned systems of 
equations by using numerical methods [11-12] are calculated. Flow calculations around 
spherically blunted  cone at  incidence are performed for designed trajectory. Thermal 
physical characteristics for graphite [13,14] were used. The porosity coefficient 

o10 o5
34.01 =ϕ , 

coefficients 85.021 == εε are used. Initial shell’s depth  m, radius of spherical 
blunting  m. Thermal physical characteristics for Cu and Fe according to [1,5,15] 
were used. Distributions of blowing rate around spherical blunting are calculated by using 
formula (1) by setting the pressure  for inner gas cavity. Initial temperature for condense 
phase is equal 1000 K. Initial temperature of freezing gas was 300 K.  The aim was to provide 
with above described ATPHS and PTHPS nonvolatile regimes for material of spherical 
blunting at hypersonic atmosphere entry. 
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Above and below – velocity vector’s components in natural coordinate system wvu ,, ( )η,,ns , 
– time, t mTP ,,, ρ – pressure, density, temperature and total molar mass, – universal gas 

constant, – metric coefficient, – radius of spherical blunting, 
R

1H NR 2,1, =iiε – coefficients of 
radiative capacity for body’s surface, μ – dynamic viscosity coefficient, ( ) wv 1ρ – freezing 
gas rate, 1ϕ – spherical blunting material’s porosity, – shell’s depth, L ξ – burning intensity, 

– viscous and accelerative coefficients for Darcey’s equation. Lower indices e, w, к fit to 
values on outer edge of boundary layer, fit to body’s surface and to internal cavity with 
freezing gas, lower indices 1 и 2 fit to condense phases, lower index  fits to initial 
conditions. Inner normal to body’s surface  are led to inside body. 
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A trajectory parameters as flight height (fig. 1) and flight velocity (fig. 2) as time function are 
illustrated. 
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Fig. 1. Flight height H (m) against time t (s) 
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Fig. 2. Flight velocity V (m/s) against time t (s) 
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Fig. 3. Pressure in internal gas cavity (Atm) against time t (s) kP

Line 1 on Fig. 3 corresponds to internal cavity’s pressure  for spherical blunting form Cu, 
line 2 corresponds to one from Fe. It takes more intensive blowing rates of freezing air for Cu 
material than for Fe material. A reason is difference in thermal physical characteristics and in 
Darcey’s coefficients for different materials. 
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Fig. 4, a Convective heat flows in symmetry plane qw (W/m2) 

against dimensionless s/RN for Cu 
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Fig. 4, b Convective heat flows in symmetry plane qw (W/m2) 

against dimensionless s/RN for Fe 
Upper curves on Fig. 4, a, b correspond to initial time. Freezing gas blowing is shielded 
convective heat flow. Conical part takes places in zone of thermal curtain which shows a 
decrease down-stream of flow. This effect implies monotonic increase at time of outer surface 
and internal surface temperatures (Fig. 5, 6). By body proceeds its trajectory convective heat 
flows monotonically decrease as a consequence of freezing air’s rate growth (Fig. 7).  
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Fig. 5, a Outer surface temperature in symmetry plane Tw (K) 

against dimensionless s/RN for Cu 
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Fig. 5, b Outer surface temperature in symmetry plane Tw (K) 

against dimensionless s/RN for Fe 
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Fig. 6, a Internal surface temperature in symmetry plane Tw (K) 

against dimensionless s/RN for Cu 
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Fig. 6, b Internal surface temperature in symmetry plane Tw (K) 

against dimensionless s/RN for Fe 
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Fig. 7, a Blowing rates ( ) wv 1ρ  in symmetry plane (kg/(m2·s)) 

against dimensionless s/RN for Cu 
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Fig. 7, b Blowing rates ( ) wv 1ρ  in symmetry plane (kg/(m2·s)) 

against dimensionless s/RN for Fe 
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Fig. 8, a Burnout depth for graphite in symmetry plane (m) 

against dimensionless s/RN for Cu 
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Fig. 8, b Burnout depth for graphite in symmetry plane (m) 

against dimensionless s/RN for Fe 
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Fig. 9, a Outer surface temperature on circumferential coordinate Tw (K) 

on cone near sphere-cone conjugation for Cu 
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Fig. 9, b Outer surface temperature on circumferential coordinate Tw (K) 

on cone near sphere-cone conjugation for Fe 
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Fig. 10, a Outer surface temperature on circumferential coordinate Tw (K) 

on cone near sphere-cone conjugation for Cu 
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Fig. 10, b Outer surface temperature on circumferential coordinate Tw (K) 

on cone near sphere-cone conjugation for Fe 
 
A monotonic growth of conical part’s temperature is responsible for growth of burnout depth 
for graphite material of conical part (Fig. 8). An analysis of temperature distributions (Fig. 9, 
10) leads to a withdrawal about possibility by using intensive freezing gas blowing to provide 
thermal protection for spherical blunting from metals. For conical graphite part a growth of 
temperature leads to thermal chemical destruction of graphite material. On windward side 
with less intensive gas curtain may takes place a sublimation (Fig. 10). 

  
Conclusions 
It takes larger level of cavity’s pressure of refrigerating air for Cu material in comparison with 
Fe material as a result of larger resistance of Cu pores in comparison with Fe pores. 
Describing conjugate model gives a possibility to estimate requirements for ATHPS and 
PTHPS to protect from thermal destruction spherical porous metallic blunting. 
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