ТЕПЛОПЕРЕНОС ПРИ ПАРООБРАЗОВАНИИ НА ПРОФИЛИРОВАННЫХ ПОВЕРХНОСТЯХ НИЗКО – ТЕМПЕРАТУРНЫХ ТЕПЛОВЫХ ТРУБ

Бурдо О.Г., Смирнов Г.Ф., Терзиев С.Г.

Одесская Национальная Академия Пищевых Технологий, Одесса, Украина.

Введение. Применение канавок, в качестве структуры тепловой трубы (TT), широко распространенно и является популярным и эффективным техническим решением в практической реализации различных конструкций систем обеспечения тепловых режимов электронной аппаратуры на борту космических и летательных аппаратов. Отработке рациональной технологии их реализации и успешному практическому их применению созданию эффективных методов расчёта посвящено множество работ [1 – 5 и др.].

Отличительной особенностью представленных в упомянутых монографиях и других статьях, посвященных задачам теплового расчёта таких ТТ с каналами, являются представления о ламинарном течении в канавках и упрощенных схемах расчёта потерь давления и располагаемом капиллярном напоре (движущем гидродинамическом потенциале) TT. К другим упрощениям относятся простые схемы определения термических сопротивлений на участках испарения и конденсации. Практически во всех общепризнанных схемах расчёта принимается существование на участке подвода тепла испарительного режима парообразования. К сожалению, несмотря на то, что ещё в известной работе Моритца было показано, что в канальной ТТ с артериями на стенке испарителя возникают крупно - масштабные температурные пульсации, но в последующих многочисленных разнообразных работах с канальными ТТ, эти экспериментальные факты не нашли подтверждения и не обсуждались. В работе представляются экспериментальные и аналитические исследованиях авторов, где, по-видимому, впервые эти явления были экспериментально промоделированы и получили объяснение. На наш взгляд этот процесс имеет существенные особенности, важные и в практическом отношении.

Режимы парообразования на профилированных поверхностях. В ОНАПТ на рабочих участках и на ТТ с канавками, типы которых приведены в табл.1-3, поставлены систематические исследования процессов парообразования.

Исследования показали, что на профилированных структурах возможны три режима парообразования: испарительный, испарительно-пульсационный (квази - испарительный) и кипение. В экспериментах наблюдалась область, в которой имела место автомодельность коэффициента теплоотдачи от уровня теплового потока. С некоторого уровня теплового потока $q \ge q_k$ в канавках начиналось пузырьковое кипение, а коэффициент теплоотдачи возрастал с увеличением q (рис.1).

Таблица 1

Поверхность	Н,мм	S,MM	t,мм	Поверхность	Н,мм	S,MM	t,мм
A1	0,15	0,1	0,3	A-6	0,50	0,1	0,4
A2	0,30	0,1	0,3	A-7	0,15	0,1	0,2
A3	0,50	0,1	0,3	M-1	0,50	0,2	0,4
A4	0,15	0,1	0,4	M-2	0,50	0,6	1,0
A5	0,30	0,1	0,4	C-1	0,50	0,7	1,0

Параметры рабочих участков (пластины с прямоугольными канавками)

В экспериментах, выполненных в ОНАПТ, кроме описанных выше режимов парообразования, отчетливо наблюдался специфический пульсационный режим. Жидкость из сеточной артерии поступала в канавки поочередно порциями с периодом порядка 5...30с. Такие режимы оказались устойчивыми и хорошо воспроизводимыми. Наблюдения дали основания полагать, что подобные режимы возможны при специфическом тепло – гидродинамическом взаимодействии потоков в канавках и артерии. Такое взаимодействие тем вероятнее, чем меньше сопротивление канавок в сопоставлении с сопротивлением выхода из артерии.

Таблица 2

Таблина 3

Поверхность	Н,мм	S,MM	t,мм	
A8	0,5	0,45	48°30'	
A9	0,5	0,58	60°	
M3	0,8	0,65	44°12'	
Л1	0,33	0,42	45°	

Параметры рабочих участков (пластины с треугольными канавками)

Примечание. А - алюминий; М - медь; С - нержавеющая сталь; Л - латунь, Н-высота, s- ширина, t- шаг

Типы профилированных поверхностей, исследованных авторами

1	S	h	t	Метод получения
	0.5	0.5	1.0	Механический ОНАПТ
3 Turan maananana anaa inaa ay	<i>S</i> ₀ = 0,15		127°	Механический ОНАПТ
4	S ₀ = 0,15		127°	Механический ОНАПТ
5	0,5	0,9	0,8	Экструзия
6	0,48	0,3	0,48	Экструзия

Подробное описание экспериментального стенда и методики исследований дано в публикации [7].

Моделирование теплоотдачи при испарении в капиллярных каналах методом электротепловой аналогии. Метод электротепловой аналогии (ЭТА) позволил простыми средствами получить обширный экспериментальный материал. Моделировались прямоугольные, треугольные и трапецеидальные канавки, покрытые пленкой жидкости, с плоским мениском, с незаглубленным и с заглубленным мениском (частично осушенная канавка). С соблюдением полного геометрического подобия, изготавливались из склеенных листов электропроводной бумаги электрические модели элементарной ячейки (рис. 2), соответствующей структуры (половина канавки).

Рис.1. Типичные экспериментальные результаты исследований авторов. І – медные тепловые трубы с радиальными канавками 0,4 × 0,4мм, теплоноситель - вода); П...Х- данные авторов; П- медь- вода; Ш- медь- этанол; IV- АМг2-NH3; V- АМг2- этанол; VI- медь-этанол; VII- медь- ацетон; VIII- сталь- вода; IX- медь-R 113; Х- сталь-этанол. 1- А8; 2,13- А9; 3- М4; 4- М3; 5,10- А3; 6,11- А2; 7,12- М2; 8,14- С1; 9- М1

В [6-8] подробно представлены: постановка, принятые ограничения и результаты исследований термических сопротивлений на участках подвода тепла тепловых труб в режимах испарения, полученные на основе построения плоских электрических моделей из электропроводящей бумаги методом (ЭТА).

Известно, что граница раздела фаз "жидкость-пар" для однокомпонентной жидкости при условии отсутствия в паровой фазе газа изотермична, т.е. на этой линии граничные условия I рода. Такие же граничные условия наклейкой медных шин моделировались и на основании металлической подложки. Склеиванием электропроводным клеем низкоомной и высокоомной бумаги моделировались граничные условия IV рода. На осушенных поверхностях каналов тепловой поток отсутствовал (граничные условия II рода). В опытах измерялось электрическое сопротивление моделей для широкого диапазона изменения основных безразмерных геометрических (h/s; b/s; < β), физических ($\lambda_{\rm ж}/\lambda_{\rm M}$) и режимных (R/S) параметров. Сокращения числа независимых переменных удалось добиться благодаря тому, что предполагалось, что деформацией линий теплового потока можно пренебречь в местах перехода от подложки к смоченному каналу и от канала к пленке жидкости (поскольку $\lambda_{\rm ж}/\lambda_{\rm M} <<1$) Т.е. считалось, что тепловая модель состоит из трех последовательно расположенных зон: I - металлической под - ложки; II- канальной структуры; III - пленки жидкости (рис.2).

С учетом принципа суперпозиций термических сопротивлений этих зон можно записать:

$$\frac{\delta_{M} + h + \delta_{\mathcal{K}}}{\lambda_{\mathcal{Y}}'} = \frac{\delta_{\mathcal{K}}}{\lambda_{\mathcal{K}}} + \frac{h}{\lambda_{\mathcal{Y}}} + \frac{\delta_{M}}{\lambda_{M}}$$
(1)

Таким образом, задача расчета термического сопротивления структуры может быть сведена к определению эквивалентной теплопроводности λ_Э зоны II.

Рис.2.Представительные ячейки прямоугольного и треугольного канала, принятые при электромоделировании

Так же, как и при численном решении, при электромоделировании наибольшие трудности определяются организацией связи мениск-стенка канала.

Частные зависимости эквивалентной теплопроводности прямоугольных канавок от геометрических параметров при плоском мениске приведены на рис.3.

Ro; R₁; R₂ – радиусы менисков, соответственно, плоского, цилиндрического не вписанного и цилиндрического вписанного

Видно, что с ростом относительной высоты (h/s) увеличивается (λ_{3}/λ_{M}). Это связано с относительным уменьшением влияния поверхностного термического сопротивления и

хорошо согласуется с известными физическими представлениями о том, что существенный вклад в термическое сопротивление смоченных каналов при испарении вносит область у границы раздела фаз "ребро-пар". Чем меньше h, тем больше вклад этого сопротивления, тем меньше величина λ_{\Im} . При увеличении a/S наблюдается снижение $\lambda_{\Im}/\lambda_{M}$, что объясняется ростом доли участка канала с граничными условиями II рода.

Для участка I и для неглубоких канавок в соответствии с принятой моделью:

$$l = (h - x) \sqrt{\left(\frac{\lambda_{M}}{\lambda_{K} C_{1}}\right)^{2} + 1}$$
(2)

После перехода к безразмерной форме известное дифференциальное уравнение теплопроводности для одиночного стержня примет вид:

$$\frac{d^{2}\Theta}{d\overline{x}^{2}} - \Theta \frac{\lambda_{\mathcal{K}}}{\lambda_{\mathcal{M}}} \frac{2h}{b-2s} \frac{1}{\sqrt{\left(\frac{\lambda_{\mathcal{M}}}{\lambda_{\mathcal{K}}C_{1}}\right)^{2}}} \frac{1}{1-\overline{x}} = 0$$
(3)

При $\bar{\mathbf{x}}=0$ $\Theta=1$ $0 \le \gamma \le a/s$; $(d\theta/dh)=0$. При $\bar{\mathbf{x}}=1$ $a/s \le \gamma \le b/s$ $\Theta=0$. В работах [6, 8] показано, как на основе исходных положений получить форму для обобщения результатов электромоделирования. Все результаты опытов в широком диапазоне значений ($\lambda_{\mathcal{K}}/\lambda_{M}$) (от 0,2 до 0,0003) с точностью ±60 % аппроксимируются зависимостями [6]:

для прямоугольных каналов
$$z = 0.5\gamma^{-1}$$
 (4)
для треугольных каналов $z = 0.077\gamma^{-0.62}$ (5)

В уравнениях (6.31)-(6.32) при прямоугольном канале

$$Z = \left[\frac{\lambda_{M}}{\lambda_{\Im}}\frac{b-2s}{b}-1\right]\frac{h}{s}\frac{\lambda_{M}}{\lambda_{\mathscr{K}}}\frac{1}{C_{1}}+1$$
(6)

$$\gamma = \frac{\lambda_{\mathcal{K}}}{\lambda_{M}} \frac{2h}{b-2s} \frac{1}{\sqrt{const} \left(\frac{\lambda_{M}}{\lambda_{\mathcal{K}}}\right)^{2}} \times f\left(\frac{s}{h}; \frac{R}{h}; \overline{x}; m\right)$$
(7)

где

$$f_{1} = \left\{ m \frac{s}{h} - \frac{m}{1 + m^{2}} \left[\sqrt{\left(\frac{R}{h}\right)^{2} \left(m^{2} + 1\right) - k_{1}^{2}} + mk_{1} \right] \right\}$$
(8)

$$k_{1} = \frac{s}{h} \left(m - 1\right) \sqrt{\left(\frac{R}{h}\right)^{2} - \left(\frac{s}{h}\right)^{2}} + const$$
(9)

$$m = C_{1} \frac{\lambda_{\mathcal{K}}}{\lambda_{M}}$$
(10)

Однако полученные аппроксимации громоздки и неудобны для практического использования. Принимая во внимание, что реальным тепловым трубам соответствуют конкретные пары "металл-жидкость" с практически не меняющимся значением ($\lambda_{\text{Ж}}/\lambda_{\text{M}}$), целесообразно для расчета перейти к более простым эмпирическим зависимостям вида:

 $(\lambda_{\mathcal{P}}/\lambda_M) = f(x_1; x_2; ..., x_n) \phi(R/s)$, где $x_1, x_2... x_n$ -безразмерные геометрические параметры; $\phi(R/s)$ - учитывает влияние режимного фактора.

При определении вида зависимости **f** для прямоугольных каналов, принимались во внимание следующие соображения: с уменьшением h величина λ_3 уменьшается, но при h \rightarrow 0, λ_3 стремится к некоторому минимальному значению, если учитывать, что тепло отводится только с поверхности мениска, доля которого определяется как (s/ ς). Поэтому, при h \rightarrow 0, $\lambda_3 \rightarrow \lambda_{\text{K}}$ (s/ ς). Это означает, что вид **f** должен быть таким [6]:

$$\frac{\lambda_{\Im}}{\lambda_{\mathscr{K}}}\frac{\varsigma}{s} = 1 + const \quad \left(\frac{h}{s}\right)^{m} \left(\frac{\varsigma}{s}\right)^{n}$$
(11)

Тогда, коэффициент теплоотдачи при испарении жидкости в случае плоских менисков (малые уровни тепловых потоков) определяется из соотношений для прямоугольных каналов:

$$\alpha_{0} = \frac{\lambda_{\mathcal{K}}}{h} \frac{\varsigma}{s} \left[1 + C_{1} \left(\frac{h}{s} \sqrt{\frac{\varsigma}{s}} \right)^{m} \right]$$
(12)

для треугольных каналов:

$$\alpha_0 = \frac{\lambda_{\mathcal{H}}}{h} (a - d \sin \beta)$$
(13)

Влияние уменьшения радиуса кривизны мениска, что эквивалентно росту плотности теплового потока, можно учесть следующим образом:

$$\alpha = \alpha_0 \exp\left(0,58 - \frac{s}{R}\sqrt{\frac{s}{h}}\right)$$
(14)

Для ряда сочетаний конструкционного материала и теплоносителя значения констант в соотношениях (12) и (13) сведены в (табл. 4).

Таблица 4

Расчетная пара	$\lambda_{\mathcal{K}}/\lambda_{\mathbf{M}}$	C ₁	m	a	d
Сталь-аммиак	0,03-0,04	1,58	1,64	0,112	0,0059
Нержавеющая	0,03-0,04	1,58	1,64	0,112	0,0059
сталь-вода					
Дюралюминий-	0,002-0,004	2,6	1,5		
аммиак					
Дюралюминий-вода	0,002-0,004	2,6	1,5		
Дюралюминий-	0,0005-	1,59	1,47	0,006	0,0048
ацетон	0,0006				

Значения расчетных параметров

Гидродинамический механизм испарительно-пульсационного режима. В опытах на коротких участках артериально-канавчатых структур испарительный режим парообразования нарушался уже при достаточно низких тепловых потоках ($q < 10^4 \text{ Bt/m}^2$). Возникал режим парообразования, о существовании которого ранее не упоминалось. На основании визуальных наблюдений он назван испарительно-пульсационным. Основные стадии этого режима приведены на рис.4.

1. Из питающей артерии 5 жидкость как бы "выстреливает" и полностью заполняет канал 1. При этом радиус мениска $R \rightarrow \infty$, а располагаемый капиллярный напор (σ/R_1) $\rightarrow 0$.

2. В канале 2 в этот момент происходит испарение жидкости, мениск заглубляется ($R_1 < R_2$) и поверхность частично осушается, но капиллярный напор еще меньше гидравлического сопротивления (ΔP) в зоне контакта "артерия — канал": $0 < \frac{\sigma}{R_2} < \Delta P$.

3. Процесс испарения продолжается вплоть до почти полного высыхания. Так, в канале 3: $R_2 >> R_1$, а $\frac{\sigma}{R_2} >> \frac{\sigma}{R_1}$.

4. Когда значение капиллярного напора превысит величину ΔP , начинается истечение жидкости из артерии 5. Поскольку, сопротивление канала 4 меньше величины ΔP , жидкость мгновенно заполняет канал.

Рис.4. Стадии испарительнопульсационного режима.

При высоких плотностях тепловых потоков периодическое поступление жидкости в канавки не могло не вызвать существенных пульсаций температур стенки (рис.5). Такое объяснение опытного факта, установленного в [7], представляется наиболее естественным.

Итак, в каналах с жидкостью развивается процесс испарения, завершающийся высыханием, а ранее осушенные канавки заполняются жидкостью. Такие режимы отчетливо наблюдались с широкими каналами (например C_1). Примечательно, что в этих режимах сохранялась автомодельность коэффициента теплоотдачи при изменении плотности теплового потока до наступления процесса пузырькового кипения в канавках. Таким образом, несмотря на пульсационный характер движения жидкости в канавках, закономерности теплообмена оказывались такими же, как и в испарительном режиме, поэтому и предлагается именовать его испарительно-пульсационным.

Если с ростом плотности теплового потока в коротких канавках не происходит осушения, то испарительно-пульсационный режим сменяется пузырьковым кипением в канавках.

Физическая модель испарительно-пульсационного режима. Приближенная физическая модель испарительно-пульсационного режима, основанная на визуальных наблюдениях, может быть сформулирована как модель двухстадийного процесса.

1 стадия — осушение канавки за счет испарения при относительно слабом влиянии подпитки. 2 стадия — истечение жидкости в канавку при относительно слабом влиянии испарения.

Рис.5. Пульсации температуры стенки тепловой трубы.

Рассмотрим стадию 1. Если: $q; t; f_{\mathcal{K}}, \mathcal{G}_{M}, \tau$ — плотность теплового потока, периметр обогреваемого канала и его поперечное сечение, заполненное жидкостью, перегрев стенки и время, то уравнение, описывающее процесс осушения

$$q \cdot t = \rho_{\mathcal{K}} \cdot r \cdot \frac{df_{\mathcal{K}}}{d\tau} - \rho_{\mathcal{M}} \cdot c_{\mathcal{M}} \cdot f_{\mathcal{M}} \cdot \frac{1}{2} \cdot \frac{d\mathcal{G}_{\mathcal{M}}}{d\tau}$$
(15)

или, так как $\frac{d \vartheta}{d \tau} = -\frac{q \cdot h}{\lambda_2^2} \cdot \frac{d \lambda_3}{d \tau}$ и $r \cdot \rho_{\mathcal{K}} \cdot \lambda_3^2 \cdot 2 >> \rho_M \cdot c_M \cdot f_M \cdot q \cdot h \cdot d \lambda_3 / d f_{\mathcal{K}}$

то, если пренебречь вторым слагаемым в правой части уравнения (15), то можно получить простую зависимость для времени осушения канала

$$\tau_1 \approx \frac{f_{\max} \cdot \rho_{\mathcal{K}} \cdot r}{q \cdot t} \quad , \tag{16}$$

которое по порядку величин (~ 10с) хорошо согласуется с данными визуальных наблюдений.

Оценка времени осушения канала τ_1 дает возможность развить физические представления о возможном механизме теплообмена при испарительно-пульсационном режиме. В первую очередь существенное значение приобретает ответ на вопрос о характере переноса тепла от стенки к границе раздела фаз. Основной перенос тепла осуществляется в узкой области, в зоне сопряжения мениска с ребром канавки. Масштаб пленки жидкости в этой зоне в сотни раз меньше ширины канавки. С учетом изложенного Fo >>1, т.е. в первом приближении даже для такого нестационарного процесса, как испарительно-пульсационный, режим переноса теплоты можно рассматривать как квазистационарный процесс для каждой характерной его стадии, в пределах которой примерно сохраняются и форма и размеры поперечного сечения смоченного жидкостью участка канала.

Таким образом, температурное поле в системе "профилированная поверхность - слой испаряющейся жидкости" можно считать квазистационарным и для расчета термических сопротивлений использовать данные о зависимостях по λ_3 для испарительного режима при парообразовании в канавках, осреднив определенным образом радиусы кривизны мениска.

Анализ второй стадии можно провести следующим образом.

При осушении канавок происходит заглубление жидкостного мениска, уменьшение его радиуса кривизны. В некоторый момент времени, близкий к условию полного осушения, капиллярный потенциал треугольного (трапецеидального) канала оказывается заметно превосходящим сопротивление перехода жидкости в него из подпитывающего устройства (артерии), что приводит к струйному истечению жидкости в канал. При этом движущий потенциал формируется заглубленным мениском, а сопротивление движению определяется условиями течения в затопленном канале. Если пренебречь инерционными эффектами, то уравнение, определяющее координату фронта жидкости в канале, в зависимости от времени и других факторов представится в форме:

$$\frac{\sigma}{a}C_{\sigma} = C_{f}\mu_{\mathcal{K}}x\frac{dx}{d\tau}\frac{1}{d_{\vartheta}^{2}}$$
(17)

Решение уравнения (17) дает: 2 $\frac{\sigma}{a} \frac{C_{\sigma}}{C_{f}} \frac{d_{2}^{2}}{\mu_{\mathcal{K}}} \tau \approx x^{2} + const$

Условие т→0 дает const = 0, тогда $x = const \sqrt{\frac{\sigma}{a} \frac{d_{\mathfrak{I}}^2}{\mu_{\mathcal{K}}} \tau}$

И при известной длине участка l характерное время заполнения т₂

$$\tau_2 = \frac{a\mu_{\mathcal{K}}}{\sigma} \left(\frac{l}{d_{\mathcal{F}}}\right) C_1 \tag{18}$$

Знание величин τ_1 и τ_2 позволяет установить ту длину участка парообразования, при которой возможно существование рассматриваемого режима. Действительно, если за время $\tau_1 + \tau_2$ тепловой поток окажется достаточным, чтобы обеспечить перегрев стенки выше температуры метастабильного состояния, то в этом случае такой режим будет сопровождаться постепенным осушением поверхности теплообмена. Подобные режимы наблюдались в опытах, соответствующее условие можно записать в форме

$$\frac{f_{\max}\tau\rho_{\mathcal{H}}}{qt} + C_1 \frac{a\mu_{\mathcal{H}}}{\sigma} \left(\frac{l}{d_{\mathcal{H}}}\right)^2 \le \frac{\rho_M c_M \delta_M \mathcal{G}_M}{q} \tau + \frac{f_{\max}\tau\rho_{\mathcal{H}}}{qt}$$
(19)

Или

$$C_1 \frac{a\mu_{\mathcal{K}}}{\sigma} \left(\frac{l}{d_{\mathcal{H}}}\right)^2 \le \frac{\rho_M c_M \delta_M \mathcal{G}_M}{q} \tau \tag{20}$$

Отсюда участки, при которых возможны устойчивые испарительно-пульсационные режимы, ограничены

$$\left(\frac{l}{d_{\Im}}\right) \leq \sqrt{\frac{r \cdot \rho_{\mathscr{K}} \cdot f_{MAX} \cdot \sigma}{a \cdot \mu_{\mathscr{K}} \cdot q \cdot t}}$$
(21)

Расчетные оценки τ_1 , τ_2 , (l/d_3) для условий опытов [6] приближенно согласуются с данными экспериментов.

Испарительно-пульсационный режим проявляется и в безартериальных гравитационных тепловых трубах, например с винтовой нарезкой (рис.5). В этом случае в зависимости от количества заправленного теплоносителя, угла наклона возможно перераспределение жидкости в системе параллельных каналов резьбовой структуры. Температура (рис.5) регистрировалась цифровым микровольтметром Щ 68003 и цифропечатающим устройством Щ 68000К с периодом связи с медь-константановой термопарой, расположенной в центре стенки TT, 0,02 с. Результаты получены на TT с поверхностью М₄ при работе на этаноле.

Тепловая модель испарительно -пульсационного режима. В качестве элементарной ячейки профилированной поверхности рассматривается открытая капиллярная канавка, в общем случае трапецеидальной формы (рис.6). Канавка имеет длину α и образована двумя прямыми ребрами произвольного профиля. Профиль ребра характеризуется функцией f(x) (рис.7). Для прямоугольного ребра f(x) = a, для треугольной канавки $f(x) = \frac{x}{h}a$. Считаем, что температура жидкости, окружающей ребро канавки, равна температуре насыщения при давлении, вычисленном с учетом кривизны мениска в канавке. Известно, что

перегрев, вызванный кривизной мениска (нуклеационный перегрев), равен: $\Delta T^* = \frac{4\sigma T_H}{r\rho'' s}$,

а температурный напор в основании ребра: $\Delta T_0 = (T_C - T_H) - \Delta T^* = \Delta T - \Delta T^*$.

Условием стабильной работы испарителя является полное смачивание канавки, отсутствие сухих пятен. Тогда возможны следующие режимы теплопереноса:

1) для дегазированного теплоносителя и поверхности при $\Delta T < \Delta T^*$ случайный паровой пузырь конденсируется в слое жидкости, и тепло передается только теплопроводностью через ребро канала к мениску-границе раздела фаз. В случае наличия в жидкости газа возможно образование парогазовых пузырей. При выходе парогазовых либо газовых пузырей в паровое пространство осуществляется турбулизация потока жидкости, что может привести к некоторой интенсификации теплообмена, к росту α ;

2) при $\Delta T < \Delta T^*$ образовавшийся пар может частично конденсироваться в слое жидкости, частично выходить в паровую полость через границу раздела фаз.

Рис.6. Элементарная ячейка профилированной капиллярной структуры

Схема переноса теплоты по второму режиму представляется следующей: 1. У стенки образуется паровая фаза, которая отводится под действием избыточного давления пара $\Delta P''$. Его величина определяется капиллярным давлением: $\Delta P'' = \frac{2\sigma}{r}$.

2. Под действием избыточного давления $\Delta P''$ в канавке формируется мениск, криволинейная граница раздела фаз. Это вызывает движение жидкости в канавке.

3. Основное термическое сопротивление при парообразовании в смоченной канавке - это сопротивление на пути переноса теплоты через ребро канавки к границе раздела фаз. Расчет этого термического сопротивления основывается на распределении температур в ребре канавки [6]. Высота ребра равна глубине канавки h, его теплопроводность λ_M . Ребро покрыто пленкой жидкости δ бна всей длине канавки α (рис.6). Для случая, когда $\delta << S$ и δ практически не меняется по высоте h, можно перейти к известной задаче теплопроводности в прямоугольном ребре с некоторыми особенностями в граничных условиях.

Расчет теплообмена в прямом ребре с учетом гидравлического сопротивления движению жидкости в канале и ее скорости приводит к зависимости для определения толщины микрослоя и плотности теплового потока

$$\delta \approx \left(\frac{q v_{\mathcal{K}}}{r \sigma} s\right)^{0,4} \left(\frac{f_P}{\Pi}\right)^{0,6} \left(\frac{\lambda_M}{\lambda_{\mathcal{K}}}\right)^{0,2} \qquad q \approx \left(\frac{r \sigma \lambda_{\mathcal{K}}^3}{v_{\mathcal{K}}}\right)^{1/6} \frac{\sqrt{\lambda_M} \left(1-\varepsilon\right)^{5/6}}{\left\{\left[s\left(\frac{f_P}{\Pi}\right)^4\right]^{0,2}\right\}^{5/6}} \left(\Delta T - \Delta T^*\right)^{5/6} \tag{22}$$

Здесь $\left[s\left(\frac{f_P}{\Pi}\right)^4\right]^{0,2} = d$ – характерный размер открытого капиллярного канала. Для

прямоугольной канавки $f_P = (b - s)$, а треугольной: $\Pi = 2 a$ $f_P = \frac{b}{2}a$ $d = \left[s\left(\frac{b}{4}\right)^4\right]^{0,2}$

Обобщение экспериментальных данных по теплообмену в испарительнопульсационном режиме. На основе разработанной модели проведено обобщение экспериментальных точек авторов для испарительно-пульсационного режима и литературных данных. Все точки с точностью ±50% коррелируются уравнением:

$$Z = q \cdot {}_{6} \sqrt{\frac{v_{\mathscr{R}} \cdot d^{5}}{r \cdot \delta \cdot \lambda^{2}_{\mathscr{M}} \cdot \lambda^{2}_{\mathscr{R}} \cdot (1 - \varepsilon)^{2}}} = 0.034 \cdot (\Delta T - \Delta T^{*})^{5/6}; ..\Delta T^{*} = \frac{4 \cdot \sigma \cdot T_{s}}{r \cdot \rho^{"} \cdot s}$$
(23)

Пористость є равна 0,5 для треугольных каналов и (S/b) - для прямоугольных. Значения коэффициентов теплоотдачи в этом режиме слабо зависят от геометрических параметров каналов (в практическом диапазоне конструкций TT), а определяются теплоносителем, материалом поверхности, давлением:

Если полагать, что отношение $\Delta T^* / \Delta T \ll 1$, тогда получаем приближённую зависимость для коэффициента теплоотдачи при парообразовании в таких условиях в следующем виде:

$$\alpha = C_{2} \cdot {}_{6}\sqrt{\frac{r \cdot \sigma \cdot \lambda^{2}_{M} \cdot \lambda^{3}_{\mathcal{K}} \cdot (1 - \varepsilon)^{5}}{\Delta T \cdot v_{\mathcal{K}} \cdot d^{5}}}$$

(24)

Значения коэффициентов теплоотдачи в этом режиме слабо зависят от геометрических параметров каналов (в практическом диапазоне конструкций TT), и определяются теплоносителем, материалом поверхности, давлением.

Уравнение (23) с точностью $\pm 25\%$ описывает экспериментальные точки авторов и литературные данные, полученные на стальных, медных, алюминиевых поверхностях при испарении воды, этанола, хладонов R - 12; R - 22; R - 113, аммиака, ацетона. В уравнении (24) коэффициент C₂ учитывает свойства материала поверхности нагрева и теплоносителя. При кипении воды на медной, алюминиевой и стальной поверхностях C₂ равно, соответственно, 4,42; 3,34; 0,67; а при кипении этанола – 1,54; 2,42; 0,7.

Теплоотдача при кипении на профилированных поверхностях. Обработка экспериментальных данных, полученных на поверхностях (табл. 3), изготовленных механическим способом, проведена по соотношению:

$$\alpha = Aq^{2/3} \tag{25}$$

Значения коэффициента А и плотности теплового потока, соответствующей началу кипения в канавках приведены в табл.5.

Таблица 5

	Расчетная пара									
Параметр	Медь				Дюралюминий			Нерж. сталь		
	вода	этанол	ацетон	R-113	вода	этанол	аммиак	вода	этанол	
A	8,16	5	4,95	3	6,75	4,81		4,4	3,17	
$q_{\rm K}, \kappa {\rm Bt/m}^2$	58	33	33	24	56	33		35	23	

Значения расчетных параметров

Значение q_K, соответствующее переходу от испарительного режима к пузырьковому кипению, можно установить по перегреву стенки из условия равенства тепловых потоков или по тепловому потоку из условия равенства перегрева.

Условные обозначения: ΔT . — разность температур; q — плотность теплового потока; г - скрытая теплота парообразования; λ - теплопроводность; μ - динамическая вязкость ν кинематическая вязкость жидкости;; σ — поверхностное натяжение; ρ — плотность жидкости; d — характерный размер. Индексы: ж - жидкость; м - металл; s- насыщение.

Рекомендации по расчету теплоотдачи при кипении на профилированных поверхностях.

1. Если длина каналов на испарителе соизмерима либо меньше длины каналов транспортного участка, то в каналах устанавливается стабилизированное ламинарное течение. Специфика теплообмена в этих условиях определяется сопряженным характером процесса теплопроводности в системе "пленка - стенка". В таких режимах работают испарители без артерий (например, тепловые трубы с продольными каналами без артерий), теплообмен в которых рекомендуется рассчитывать по формулам авторов, полученными при обобщении их данных.

2. В артериально-канальных испарителях пульсационный характер орошения каналов приводит к периодическому осушению стенок. Основной механизм переноса тепла в этих условиях - теплопроводность от стенки к границе раздела фаз, однако положение этой границы нестабильно, что затрудняет использование их формул.

3. Плотность теплового потока q_{κ} , соответствующую границе перехода от режима испарения к пузырьковому кипению, можно установить из условия равенства плотностей тепловых потоков на границе этих режимов.

4. Полученные результаты могут быть использованы для теплового расчета тонкопленочных канальных: испарителей, для решения сопряженной теплогидродинамической задачи оптимизации теплопередающих устройств и систем на их основе.

Литература.

1. Васильев Л.Л., Конев С.В. «Теплопередающие трубки», - Минск: «Наука и техника», 1972. – 151с.

2. «Низкотемпературные тепловые трубы для летательных аппаратов» - Воронин В.Г., Ревякин А.В., Тарасов В.С., Сасин В.Я. – Москва: «Машиностроение», 1976год., - 200стр.

3. Ивановский М.Н., Сорокин В.П., Ягодкин И.В. «Физические основы тепловых труб», - Мос.: Атомиздат., 1978год, 256стр.

4. Дан П.Д., Рэй Д.А. «Тепловые трубы». – Москва.: «Энергия», 1979год. 272стр.

5. Чи. С. «Тепловые трубы. Теория и практика».- М.: «Машиностроение», 1981год. – 208стр.

6.Бурдо О.Г., Смирнова Ж.Б. «Исследование термических сопротивлений канавчатых структур», // ИФЖ. 1963. том. Х. N3. с. 535 – 536.

7. Бурдо О.Г. Режимы и интенсивность теплоотдачи при парообразовании на профилированных поверхностях //ИФЖ. 1987. том. 52. N6. с. 899 – 906.

8. Chaikovsky V., Smirnov G., Burdo O. Complex investigation of characteristics and processes in artery-grooved heat pipes.// Proc. 3-rd int. heat pipe conf.-Palo Alto. USA.-1978-N460 -p. 426-433.