П. В. Булат¹, К. Н. Волков¹, Л. П. Грачев², И. И. Есаков², П. Б. Лавров², М. Е. Ренев¹ Воздействие электронного пучка и внешнего электрического поля на пропано-воздушную смесь

Рассматривается влияние предварительной ионизации горючей смеси U возбуждения под воздействием электронного ee молекул пучка и внешнего электрического поля на интенсивность процессов горения смеси при различных скоростях ее возбуждения. Приведены результаты расчета темпер туры сухой и влажной пропано-воздушных смесей при их воспламенении. Даны рекомендации по применению облучения дозвукового течения такой смеси электронным пучком во внешнем электрическом поле для увеличения эффективности ее горения.

Ключевые слова: плазмо-химическая модель, химические реакции, плазменное горение, электронный пучок, электрическое поле.

¹Балтийский государственный технический университет «ВОЕНМЕХ» им Д. Ф. Устинова. Россия, 190005, г. Санкт-Петербург, ул. 1-ая Красноармейская, 1; ²Московский радиотехнический институт РАН. 117519, г. Москва, Варшавское шоссе, 132; э-почта: dsci@mail.ru.

Введение. Для повышения эффективности сгорания углеводородных топлив их подвергают различного рода воздействиям, в частности, воздействию пучков электронов и внешнего электрического поля, а также их совместному воздействию [1, 2]. В работе [3] рассматривается изменение параметров обтекания шара пропано-воздушной смесью с использованием электронного пучка, инжектированного через сопло Лаваля, при одновременном воздействии на это течение электрического разряда. В работе [4] обсуждается применение электронного пучка для активации воздуха с целью его дальнейшего использования в горючей пропано–воздушной смеси. Появление колебательно- и электронно-возбужденных частиц в такой смеси улучшает процесс ее горения и снижает время воспламенения [5].

Система химических реакций в пропано-воздушной смеси, приведенная в работах [6, 7], удовлетворительно описывает процессы ее горения при атмосферном давлении и температурах выше 1500 К. Нагрев электронов плазмены, образующейся в атомарном газе при инжекции в него быстрых электронов, рассматривается в работах [8–10]. При

описании воздействия плазмы или пучка электронов на пропано-воздушную смесь необходимо учитывать электронно-молекулярные, электронно-ионные и ионно-ионные взаимодействия в ней с участием продуктов воздействия быстрых электронов на молекулы пропана, поскольку плазма в ионизованном газе оказывает специфическое химическое воздействие на его молекулы [11–16].

Пары воды, присутствующие в горючей смеси оказывает существенное влияние на кинетику реакций образования в ней ионов и на скорость ее нагрева. Предварительные расчеты плазмы сухой пропано-воздушной смеси, образованной в результате действия на смесь пучка электронов или несамостоятельного электрического разряда показали, что, при нагреве такой смеси в ней нарабатываются до момента ее воспламенения пары воды, концентрация которых составляет 1–2%, что необходимо учитывать при моделировании плазмы смеси.

В настоящей работе приведены результаты расчетов нагрева и воспламенения пропано-воздушной смеси по модели, учитывающей наличие паров воды в смеси и их реагирование, а также по модели сухой смеси, в которой отсутствуют реакции с молекулами воды. Расчеты проводились для плазмы пропано-воздушной смеси, созданной пучком электронов или под воздействием несамостоятельного электрического разряда. Рассматривалась эволюция температуры в сухой и влажной пропано-воздушных смесях, а также в сухом и влажном воздухе при одних и тех же условиях внешнего воздействия. Исследовалось влияние паров воды в пропано-воздушной смеси на ее воспламенение в различных условиях.

Плазмо-химическая модель. В расчетах использовалась кинетическая схема химических реакций в пропано-воздушной смеси, объединенная с кинетической схемой воздуха, возбужденного электронным пучком во внешнем электрическом поле. Для исследования кинетики горения пропано-воздушной смеси за основу выбрана система химических реакций из работы [6], дополненная обратными реакциями (74 реакции, включающие водородно-кислородную цепочку, гидропероксильные и пероксидные реакции, реакции пропана, реакции І-пропила, N-пропила и пропена, реакции этилена, этила и винила, кетонные реакции, реакции метила и формальдегида) и стандартным уравнением энергии с энтальпиями, рассчитанными на основе данных работы [7]. Химия воздуха взята из программы расчета его плазмы [4, 16], согласно которой плазма воздуха включает 20 компонентов (нейтральные частицы, электроны, положительные и отрицательные ионы) и в нем происходит 120 плазмохимических реакций.

При моделировании влажной пропано-воздушной смеси предполагалось, что она состоит их следующих компонентов: положительных ионов O⁺, O₂⁺, O₄⁺, H⁺, H₂⁺, OH⁺,

 $HO_2^+, H_2O^+, O_2^+(H_2O), H_3O^+, H_3O^+(H_2O), H_3O^+(OH)$ и $H_3O^+(H_2O)_2$, отрицательных ионов O^- , O_2^-, O_3^-, H^- и OH^- , атомов O и H, молекулл H_2 , O_2 , H_2O и O₃, свободных радикалов OH, HO_2 и H_2O_2 , молекул $O(^1D_1)$, $O(^1S_0)$ и $O_2(^1\Delta_g)$ в возбужденном состоянии, электронов и компонентов воздушной плазмы. В расчетах кроме реакций с участием этих компонентов учитывались рекомбинации каждого положительного иона с каждым отрицательным ионом [17]. Модель такой смеси включает реакции трех-тельного прилипания ионов к молекулам O_2 в присутствии молекул H_2O в качестве третьего тела, перезарядку и ионно-ионную рекомбинацию положительных и отрицательных ионов.

Константы скоростей химических реакций в пропано-воздушной смеси определялись на основе метода Фланннери [15] с учетом их зависимости от температуры и давления [16, 18]. В плазмо-химической модели смеси учитывалось охлаждение плазменных электронов в упругих и неупругих столкновений с молекулами воды, кислорода и азота при возбуждении их колебательных и вращательных степеней свободы [19].

Константы скоростей электронно-молекулярных взаимодействий в воздухе и в пропано-воздушной смеси (как в сухой, так и во влажной) определялись с учетом возбуждения молекул, их ионизации, прилипания молукул друг к другу и их отлипания. На основе решения уравнения Больцмана с учетом сечений электронно-молекулярных процессов в пропане, кислороде и азоте определялись константы скоростей ионизации молекул и их прилипания. Эти константы отличаются незначительно от констант указанных процессов в воздухе при концентрации пропана в нем, меньшей 10%, что позволяет использовать константы скоростей электронно-молекулярных процессов, полученных для воздуха, в расчете плазмы пропано-воздушной смеси при концентрациях, соответствующих бедной и стехиометрической смесям).

Начальное давление газа в пропано-воздушной смеси полагалось равным 1 атм, а ее температура — 290 К. Рассматривался электронный пучок с плотностью тока $10^{-5}-10^{-3}$ А/см² при $W = 10^{17}-10^{19}$ эВ/(см³·с). Расчеты проводились в термодинамическом приближении. Максимальная удельная энергия, подводимая к смеси импульсом ионизации заданной мощности длительностью 40 мкс в электрическом поле напряженностью 3 кВ/см составляла 1 Дж/см³.

Результаты расчетов. Расчеты проводились для пропано-воздушной смеси с парами воды и для сухой пропано-воздушной смеси, а также для плазмы, созданной в пропано-воздушной смеси пучком электронов, и для плазмы в такой смеси, созданной под воздействием несамостоятельного электрического разряда. Тенденции, наблюдаемые при

воздействии электронного пучка и несамостоятельного электрического разряда на сухие смеси, имели место и в смесях с парами воды.

Состав смеси. В плазме, образующейся в сухой пропано-воздушной смеси в результате воздействия на нее пучка электронов, основными нейтральными частицами являются N_2 , H_2O , NO и CO, что указывает на практически полное выгорание молекулярного кислорода в процессе его диссоциации на атомы и в ходе химических реакций, приводящих, в частности, к накоплению молекул NO в смеси. До воспламенения смеси основными заряженными частицами в ней являются отрицательные ионы O_3^- и положительные ионы H_3O^+ , а после ее воспламенения — электроны и положительные ионы H_3O^+ и $C_2H_3^+$, концентрации которых увеличивается с увеличением температуры смеси из-за замедления электронно-ионной рекомбинации в ней.

При воздействии несамостоятельного электрического разряда на сухую пропановоздушную смесь основными нейтральными частицами в плазме смеси являются N_2 , H_2O , NO и CO (как и в случае воздействия на такую смесь электронным пучком). До воспламенения смеси основными заряженными частицами в ней являются отрицательные ионы O_2^- и H_2O и положительные ионы $C_2H_3^+$ и $C_3H_5^+$, а после воспламенения — электроны и положительные ионы $C_2H_3^+$. Основными нейтральными частицами смеси после ее воспламенения являются N_2 , H_2O , NO и CO, что свидетельствует о неравновесности процессов в плазме при образовании молекул NO, мешающих превращению CO в CO₂. Состав продуктов сгорания смеси принципиально отличается от состава воздуха, что следует учитывать при моделировании ее горения и анализе результатов измерений.

Ионные составы сухой и влажной смесей, подвергнутых воздействию несамостоятельного электрического разряда, существенно различные. Во влажной смеси до воспламенения присутствуют ионы O_2^- , H_2O , $C_2H_3^+$ и $C_3H_5^+$, в то время как в сухой смеси до воспламенения — ионы O₂⁻ и H₃O⁺. После воспламенения смесей основные заряженные частицы, входящие в состав их плазмы, оказываются одинаковыми — это электроны и положительные ионы C₂H₃⁺ (происходит разрушение отрицательных ионов и отлипание от них электронов). Достаточно высокие концентрации электронов в плазме смеси поддерживают ее возбуждение и обеспечивают реализацию джоулева нагрева смеси после воспламенения. Появление тяжелых водных кластеров в смеси приводит к медленной ионно-ионной рекомбинации в ней на начальной стадии накопления радикалов в смеси и замедляет ее воспламенение.

Распределение температуры в смеси. Результаты расчетов воздействия электронного пучка мощностью $W=10^{18}$ эВ/(см³·с) на пропано-воздушную смесь

представлены на рис. 1. Время нагрева плазмы влажной смеси, образованной в результате воздействия на нее пучка электронов, меньше примерно на порядок величины по сравнению с временем нагрева плазмы сухой смеси в одинаковых условиях. При этом по свойствам воспламенения сухая смесь близка к сухому воздуху, а влажная смеси — к влажному воздуху.

Время нагрева плазмы влажной смеси, образованной в результате воздействия на нее несамостоятельного электрического разряда, меньше примерно на порядок величины по сравнению с временем нагрева плазмы сухой смесью в одинаковых условиях (рис. 2).

При возбуждении горючей смеси происходит сначала ее нагрев до температуры порядка T=1200 K, а затем воспламенение с достижением максимальной температуры T=2700 K. Плазменный эффект снижения времени воспламенения смеси в модели, не учитывающей ионно-молекулярные реакции в смеси с участием молекул пропана, достигает двух раз (сравнение касается расчетов воспламенения и авто-воспламенения при температуре T=1500 K). Часть времени источник плазмы работает как нагреватель.

Результаты расчетов эволюции температуры различных пропано-воздушных смесей под воздействием несамостоятельного электрического разряда и электронного пучка представлены на рис. 3. В рассматриваемых условиях смесь нагревается до температуры T=2290 К в течение $8.5 \cdot 10^5$ мкс. Такое же время занимает задержка воспламенения смеси с содержанием пропана 6%, что объясняется снижением количества кислорода в смеси, необходимого для эффективного горения. При возбуждении смеси электрическим разрядом и электронным пучком задержка воспламенения смеси с содержанием пропана 4% составляет 7.5 $\cdot 10^5$ и $8 \cdot 10^5$ мкс соответственно.

Время воспламенения смеси. Расчеты воспламенения пропано-воздушной смеси без учета наличия в ней реакций с участием ионов и плазменных реакций пропана дают наименьшее время ее воспламенения. Сравнение этих расчетов с расчетами, учитывающими плазмохимические реакции в смеси, указывает на замедляющую роль этих реакций. Роль накопления активных радикалов в смеси в результате ионно-ионной и электронно-ионной рекомбинаций, которые идут сравнительно медленно на начальном этапе возбуждения смеси, в системе плазмохимических реакций в смеси не ясна. Анализ механизмов этих реакций показывает, что время воспламенения смеси уменьшается в основном за счет реакций с участием ионов N_2^+ и O_2^+ .

Расчеты показали, что время воспламенения первоначально холодной стехиометрической сухой пропано-воздушной смеси, подвергнутой воздействию электронного пучка мощностью $W = 10^{18} - 10^{19}$ эВ/(см³·с), составляет $9 \cdot 10^5 - 1.0 \cdot 10^5$ мкс, а ее температура достигает T=2600 К. В случае воздействия на такую смесь

несамостоятельного разряда во внешнем электрическом поле напряженностью E=3 кВ/см время воспламенения смеси составляет $7 \cdot 10^4 - 1.0 \cdot 10^4$ мкс, т. е. уменьшается в 10 раз по сравнению с ее возбуждением электронным пучком, и температура смеси достигает T=2800 К.

Время воспламенения первоначально холодной стехиометрической пропановоздушной смеси, содержащей пары воды, оказалось равным $2 \cdot 10^5 - 3 \cdot 10^5$ мкс при ее возбуждении электронным пучком мощностью $W=10^{18}-10^{19}$ эВ/(см³·с). В этом случае температура смеси достигает T=2600 К. В случае воздействия на смесь несамостоятельного разряда во внешнем электрическом поле напряженностью E=3 кВ/см время воспламенения смеси составляет 10^4-10^5 мкс, т. е. уменьшается от 2 до 3 раз по сравнению с ее возбуждением электронным пучком, и температура смеси достигает T=2700 К. Разница между временами воспламенения пропано-воздушной смеси, содержащей пары воды, электронным пучком и несамостоятельным электрическим разрядом связывается с понижением температуры плазмы смеси во втором случае.

Обобщение результатов. Результаты расчетов воспламенения пропано-воздушной смеси в нормальных условиях представлены в табл. 1. Вариант 1 в таблице соответствует расчетам, в которых использованы система реакций пропана и воздуха (без плазменных реакций молекул пропана) и плазмо-химические реакции в сухом воздухе. Вариант 2 соответствует расчетам, в которых использованы система реакций пропана и воздуха (без учета реакций плазмы водяного пара), плазмо-химические реакции в сухом воздухе и плазмо-химические реакции компонентов пропана. Вариант 3 соответствует расчетам, в которых использованы и воздуха, плазмо-химические реакции в оздухе и плазмо-химические реакций пропана.

Заключение. Проведены исследования по выбору констант скорости электронномолекулярных взаимодействий в воздухе, а также в сухой и влажной пропано-воздушных смесях с учетом возбуждения и ионизации молекул смеси, их прилипания и отлипания. Создана обобщенная модель и программа расчета параметров плазмы пропано-воздушной смеси, образующейся в смеси под воздействием на внешнего электрического поля, электронного пучка или электронного пучка во внешнем электрическом поле. Комплексное воздействие электронного пучка и внешнего электрического поля на пропано-воздушную смесь значительно ускоряет процессы ее горения. Проведены расчеты для различных скоростей возбуждения пропано-воздушной смеси электронным пучком и электронным пучком во внешнем электрическом поле, указывающие на появление диссоциированных и электронно-возбужденных молекул воздуха в смеси и на высокую степень возбуждения этих молекул в широком диапазоне параметров пучковой плазмы. Согласно расчетам нестехиометрических смесей, добавление пропана в воздух увеличивает концентрацию частиц плазмы в нем. Комплексное воздействие электронного пучка и внешнего электрического поля на пропано-воздушную смесь приводит к значительному повышению ее температуры, стабилизирует процесс ее горения и увеличивает скорость сгорания смеси. Такое же эффект наблюдается и для бедной горючей смеси.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в ходе реализации проекта «Создание опережающего научно-технического задела в области разработки передовых технологий малых газотурбинных, ракетных и комбинированных двигателей сверхлегких ракет-носителей, малых космических аппаратов и беспилотных воздушных судов, обеспечивающих приоритетные позиции российских компаний на формируемых глобальных рынках будущего», № FZWF-2020-0015.

Обозначения

E – напряженность электрического поля, кВ/см; t – время, с; t_{ign} – время воспламенения смеси газов, с; T – температура, К; T_{cr} – температура смеси после воспламенения; W – мощность возбуждения смеси, эВ/(см³·с). Индексы: cr критический; ign — воспламенение.

Литература

- 1. Булат П. В., Волков К. Н., Грачев Л. П., Есаков И. И., Лавров П. Б. Влияние давления и состава топливной смеси на ее воспламенение подкритическим стримерным разрядом, распределенным по длине камеры сгорания. Инженернофизический журнал. 2022. Т. 95. № 4. С. 947–954.
 - 2. Афанасьев В. В., Кузьмин А К., Абруков С. А., Подымов В. Н., Ильин С. В. К вопросу воспламенения топ-ливовоздушной смеси высокоскоростной струей плазмы. Инженерно-физический журнал. 1994. Т. 67. № 5–6. С.424–427.
 - Klimov A., Bityurin V., Kuznetsov A., Tolkunov B., Vystavkin N., and Vasiliev M. External and internal plasma-assisted combustion. *AIAA Paper*. 2004. Article ID 2004-1014.
 - Ardelyan N. V., Bychkov V. L., Gromov V., and Kosmachevskii K. V. Application of two plasma ignition enhancement methods of propane-air mixture. *AIAA Paper*. 2006. Article ID 2006-612.
 - 5. Starikovskiy A. and Aleksandrov N. Plasma-assisted ignition and combustion. *Progress Energy Combust. Sci.* 2013. Vol. 39, No. 1. Pp. 61–110.

- Petrova M. V., Varatharajan B., and Williams F. A. Detailed and reduced-chemistry descriptions for ignition and detonation of propane. *ASME Paper*. 2003. Article ID GT2003-38057.
- 7. Westbrook C. K. and Chase L. L. Chemical Kinetics and Thermochemical Data for Combustion Applications. UCID-17833. Lawrence Livermore Laboratory, 1978.
- 8. Елецкий А. В., Кулагин В. Д. Расчет константы возбуждения резонансных состояний атомов в плазме, образованной электронным пучком. Москва: Ин-т атомной энергии им. И. В. Курчатова, 1979.
- Бычков В. Л., Елецкий А. В. Пучковая плазма высокого давления. Химия плазмы. 1985. Вып.12. С. 119–158.
- 10. Бычков В. Л., Васильев М. Н., Коротеев А. С. Электроннно-пучковая плазма: генерация, свойства, приложения. Москва: Изд-во МГОУ «Росвузнаука», 1993.
- 11. Foldiak G. Radiation Chemistry of Hydrocarbons. Elsevier Scientific Publishing Company, 1981.
- Kossyi I. A., Kostinsky A. Y., Matveev A. A., and Silakov V. P. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures. *Plasma Sources Sci. Technol.* 1992. Vol. 1. Pp. 207–220.
- Arnold S. T., Morris R. A., and Viggiano A. A. Reactions of O- with various alkanes competition between hydrogen abstraction and reactive detachment. *J. Phys. Chem.* 1998. Vol. 102. No. 8. P. 1345–1348.
- 14. Williams S., Miller T. M., Khighton W. B., Midey A. J., Arnold S. T., and Viggiano
 A. A. Reactions and thermochemistry of alkyl ions, CnH2n+1+ (n=1-8), in the gas phase. *AIAA Paper*. 2003. Article ID 2003-704.
- 15. **Фланнери М. Р.** *Газовые лазеры*. Под ред. И. МакДаниеля и У. Нигэна. Москва: Мир, 1986. С. 177–215.
- 16. Ardelyan N., Bychkov V., Kosmachevskii K., Chuvashev S., and Malmuth N. Modeling of plasmas in electron beams and plasma jets for aerodynamic applications. *AIAA Paper*. 2001. Article ID 2001-3101.
- 17. Бычков В. Л., Юровский В. А. Моделирование пучковой плазмы паров воды. *Теплофизика высоких температур.* 1993. Т. 31. № 1. С. 8–17.
- Смирнов Б. М. Ионы и возбуждённые атомы в плазме. Москва: Атомиздат, 1974, Ness K. F. and Robson R. E. Transport properties of electrons in water vapor. *Phys. Rev. A.* 1988. Vol. 38. Pp. 1446–1456.

Таблица 1. Результаты расчетов воспламенения пропано-воздушной смеси

N⁰	<i>W</i> ,	Ε,	T_i ,	T_c ,	Основные ионы	Основные ионы	Основные	Основные
	эВ/(см ³ ⋅с)	кВ/см	мкс	Κ	до	после	нейтральные	нейтральные
					воспламенения	воспламенения	частицы до	частицы после
							воспламенения	воспламенения
								(без учета N ₂)
1	10 ¹⁸	3	$3.0 \cdot 10^4$	2335	O2 ⁻ (11.21)	e(11.9)	C ₂ H ₄ (17.44)	NO(18.49)
					NO ⁺ (11.23)	NO ⁺ (11.9)	H ₂ (17.24)	H ₂ O(18.49)
								CO(18.48)
	10 ¹⁹	3	$8.3 \cdot 10^3$	2375	O2 ⁻ (11.65)	e(12.26)	$C_2H_4(17.61)$	NO(18.48)
					NO ⁺ (11.65)	NO ⁺ (12.26)	H ₂ (17.4)	H ₂ O(18.49)
								CO(18.48)
2	10 ¹⁸	0	$8.8 \cdot 10^5$	2580	O ₃ -(13.42)	e(14.48)	NO(15.87)	NO(18.71)
					$H_3O^+(13.44)$	$H_3O^+(14.23)$	H ₂ O(16.11)	H ₂ O(18.49)
						$C_2H_3^+(14.21)$	H ₂ (15.87)	CO(18.48)
	10 ¹⁹	0	$1.1 \cdot 10^5$	2560	O ₃ -(13.68)	e(14.71)	NO(15.97)	NO(18.71)
					$H_3O^+(13.69)$	$H_3O^+(14.41)$	H ₂ O(16.15)	H ₂ O(18.48)
						$C_2H_3^+(14.48)$	H ₂ (16.01)	CO(18.48)
	10^{18}	3	$6.8 \ 10^4$	2800	$O_2(11.10)$	e (16.02)	NO(14.84)	NO(18.71)
					$H_3O^+(11.07)$	$C_2H_3^+(16.01)$	H ₂ O(15.31)	H ₂ O(18.48)
							H ₂ (14.84)	CO(18.48)
	10 ¹⁹	3	$1.4 \ 10^4$	2800	O ₂ -(11.56)	e(16.09)	NO(14.8)	NO(18.69)
					$H_3O^+(11.58)$	$C_2H_3^+(16.09)$	H ₂ O(15.29)	H ₂ O(18.47)
							H ₂ (14.83)	CO(18.44)
3	10^{18}	0	$2.2 \ 10^6$	2570	O ₂ ⁻² [H ₂ O](14.25)	e (14.45)	H ₂ O(16.61)	NO(18.62)
					$C_2H_3^+(13.57)$	$C_2H_3^+(14.46)$	$C_2H_4(16.65)$	H ₂ O(18.60)
					$C_{3}H_{5}^{+}(13.87)$			CO(18.48)
	10 ¹⁹	0	$2.7 \cdot 10^5$	2600	O ₂ ⁻² [H ₂ O](14.24)	e(14.50)	$H_2O(17.82)$	NO(18.62)
					$C_2H_3^+(13.56)$	$C_2H_3^+(14.60)$	$C_2H_4(17.81)$	H ₂ O(18.63)
					$C_{3}H_{5}^{+}(13.91)$			CO(18.48)
	10^{18}	3	$1.05 \ 10^6$	2680	O ₂ ⁻² [H ₂ O](14.20)	e(14.57)	H ₂ O(17.79)	NO(18.61)
					$C_2H_3^+(13.53)$	$C_2H_3^+(14.74)$	$C_2H_4(17.76)$	H ₂ O(18.63)
					$C_{3}H_{5}^{+}(13.91)$			CO(18.48)
	10 ¹⁹	3	1.2 10 ⁵	2680	$O_2^{-2}[H_2O](14.20)$	e(14.59)	$H_2O(17.83)$	NO(18.61)
					$C_2H_3^+(13.53)$	$C_2H_3^+(14.75)$	$C_2H_4(17.85)$	H ₂ O(18.63)
					$C_{3}H_{5}^{+}(13.91)$			CO(18.48)

подвергнутой различным внешним воздействиям

Примечание: цифры в скобках — степень n при концентрации основных компонентов смеси, равной 10^n см⁻³.

Рис. 1. Временные зависимости плазмы воздуха (1), влажного воздуха (2), сухой пропано-воздушной смеси (3) и пропано-воздушной смеси с парами воды (4) при возбуждении электронным пучком мощностью $W=10^{18}$ эВ/(см³·с)

Рис. 2. Временные зависимости температуры плазмы несамостоятельного разряда в воздухе (1), влажном воздухе (2), сухой пропано-воздушной смеси (3) и пропановоздушной смеси с парами воды (4) при напряженности внешнего электрического поля E=3 кВ/см

Рис. 3. Временные зависимости температуры пропано-воздушных смесей с концентраций пропана 0 (1), 2 (2), 4 (3) и 6% (4) при их возбуждении несамостоятельным электрическим разрядом и распределения температуры электронной компоненты таких смесей с содержанием пропана 0 (5) и 6% (6)

Рис. 1.

Рис. 2.

Рис. 3.