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ABSTRACT: The calibration of a Scheimpflug SPIV device is actually achieved in two steps 
from a bundle adjustment technique. The SPIV recording system is first calibrated by imaging 
the planar target at different location and then the laser plane equation is obtained from a 
geometrical optimization. The misalignments between the laser sheet plane and the calibration 
plane always remains significant. In this paper we demonstrated How to calibrate a camera 
model directly into the laser sheet. A new scheimpflug model is applied to calibrate a cameras 
system. This new approach is based on the use of a target formed by spherical macro-particle. 
Experimental results on real data show the relevance of the proposed method. 

1  Introduction  

The Scheimpflug condition enables to focus a video-camera when oblique viewing at low 
aperture number. It is used in Stereoscopic Particle Image Velocimetry (SPIV) for measuring the 
three-dimensional velocity field in a section of a flow [1][2]. This condition is performed by tilting 
the sensor (or the lens) such that the object plane, the lens plane and the image plane intersect in a 
common line (figure 1). The three velocity components are reconstructed from mapping functions. 
One mapping function per camera is used to relate any 3D location to its image. The parameters of 
each mapping function are recovered at the calibration stage.  

A precise target is usually placed in a reference plane for the calibration of SPIV cameras. If the 
target is a planar one, it has to be accurately moved to different locations in depth. Other multi-level 
targets, on which different z-positions are present, are available for the special case of SPIV 
calibration. In [3], accurate axial displacements are required by the calibration protocol. All these 
calibration methods may be unstable if the positioning of the target is not accurate enough. Besides 
a method using a single image of a dot grid target was proposed in [4] but given the focal length and 
sensor pixel pitches of the PIV camera. 

Self-calibration does not use such additional accurate information on the recording system. A 
non linear least mean square procedure allows the (bundle) adjustment of the vector of the 
calibration parameters after their rough initialization. The coordinates of the calibration points are 
included in this vector. Such an approach can present two practical advantages [5]. Firstly it does 
not require metrological calibration targets so that calibration targets can be home-made and easily 
adjusted to be studied field of view. Secondly it relaxes the constraint of an accurate positioning of 
the calibration plate by a controlled translation stage device. The SPIV recording system is first 
calibrated by imaging the planar target at different location [6] and then the laser plane equation is 
obtained from a geometrical optimization. 
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Despite these advantages, the misalignments between the laser sheet plane and the calibration 
plane always remains significant [7]. 

The aim of this paper is to combine this two mentioned steps in one level using a new camera 
model in scheimpflug condition. It consists of making the calibration directly into the laser sheet. 
The new camera model in scheimpflug condition is described in section 2. In section 3, we present 
the technique of Feature points detection. The homography between image plane when imaging the 
laser plane is determined in section 4. Experimental results on real data show how the relevance of 
the proposed method.  

2  Scheimpflug camera model. 

2.1. Self-calibration from multiple images. 

The Scheimpflug camera model  is based on the pin-hole assumption. In the latter, the image 
plane is parallel to the lens plane but in the Scheimpflug camera model the image plane is tilted 
respect to the lens plane as can be seen in the Fig. 1. The conditions of the α angle (twisting of the 

lens plane around the Xcam axis see (3)) and the laser plane should be the following : 0

0

i
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x x
z z

  so that 

0
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id d f
  ,(see Fig. 1) 

 

Fig.  1.  Coordinate systems in Scheimpflug condition . 

In the pinhole camera model, the extrinsic parameters are the rotation matrix R and the translation 
vector T to change from the world plane to the camera plane, and the intrinsic parameters 
correspond to the focal length multiplied by the pixel to millimeter factors (Fx,Fy), intersection of 
the optical axis with the image plane (Cx ,Cy) and the distortion parameters (equation (1)), where s 
is any real number different from zero. See later on the radial distortion definition. 
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Fig. 2. Intersection of the point in the real world in the tilted plane and in the perpendicular plane 
taken from[14]. 
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                                                                            (1) 

To this pinhole model equation (1), two extra parameters (α,) are added. α  is the between 
Ycam axis and v vector (which can be arbitrarily chosen as the vertical direction of  the tilted 
CCD plane), and β  is  the angle between the u  vector (which can be arbitrarily chosen as the 
horizontal direction of the CCD tilted plane) and the vector Xcam , see Fig. 2. 
The origins of the tilted and the perpendicular plane are the same, as the perpendicular plane can 
be arbitrarily placed. Cameras under Scheimpflug condition have been used in Steroscopic 
Particle Image Velocimetry (SPIV), but in this works [8], [9], they consider a rotation matrix for 
small angles between the perpendicular plane and the tilted plane, resulting in three degrees of 
freedom when only two degrees are needed. In [10] the rotation angles are small because they 
corrected the tilted lens of the camera due to the weight on the lens. Another interesting work, 
[11], considers the inclination of the sensor as an additional distortion, the radial distortion being 
the same as in Brown model [12]. They change the tangential distortion adding a rotation matrix. 
This is only useful for small angles. Finally [13] develops a system  of eleven linear equations in 
which only one Scheimpflug angle is included. 
In order to transform points from the tilted plane to the perpendicular plane ( Fig. 2),  we  have  
the  following scenario. The  point ,( , , )w w w wp x y z  is  a  point  in  the world  and  r is  a  
straight  line  which  goes  from  the  point p to the optical center o. This line crosses the tilted 
image plane and the perpendicular image  plane.  The vector u is defined as (cos ,0,sin )´u   . 
That vector u lies in the plane Xcam , Zcam . The other vector v is perpendicular to the u and 
has an α angle with the Ycam vector. Hence the vector ( sin *sin ,cos ,sin *cos )v       . It 
is verified that ´* 0u v  , (where u´ is the transpose to the vector u in matrix notation). The 
following all transposed vectors are noted the same way. 
The Equation  of the line is: 
                                             r: * *( , , )´w w w wp x y z                                                                      (2) 
The projected point pper  in the perpendicular plane at a distance f  is: 
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                                          ( , , )´per perx peryp p p f                                                                             (3) 
In [14], Legarda has defined the projected point ptilt  in the tilted plane at a distance f  as following: 
                                         (0,0, )´ * *tilt tiltx tiltyp f p u p v                                                               (4) 
From (3), (4) the straight line passing though the point ptilt  intersects in the perpendicular plane: 
                                         *((0,0, )´ * * ) ( , , )´tiltx tilty perx peryf p u p v p p f                                      (5) 
Resulting: 
                                         ( *sin *sin *cos )tiltx tiltyf f p p                                                (6) 
Finally we obtain the point in the perpendicular plane pper  the tilted one ptilt : 
                         ( , )´ *( *(cos ,0)´ *(sin *cos ,cos )´)perx pery tiltx tiltyp p p p                                 (7) 
To do just the opposite transformation, i.e, to calculate the point in the tilted plane using the 
information in the perpendicular plane, the result can be easily derived: 
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Where λ1 is defined as: 

                                  1
tan* tan *
cosperx peryf f p p  


                                                       (11) 

In order to consider the lens distortion, we transform first the observed points (in the tilted plane) 
to the perpendicular one. For these transformed points, in the perpendicular plane, only radial 
distortion[12] have  to be applied due to the radial symmetry of the lenses respect to their optical 
axis. 
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r is the distance from the pixel to the principal point of the image, 
0 0,

per perp x p p y px x y y      . The radial distortion coefficients are: k1, k2, k3, where
2 2 2r x y   . 

3  Feature points detection 

We propose to use points tangent to dots and their projections in images to perform calibration 
[15].  The tangency points will be determined by selecting  bi-tangents i.e. tangents commons to a 
pair of dots. In the case of two separated ellipses, there exist four bi-tangents, two internal (LL, 
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RR). In this way, 6 intersections between bi-tangents can be added as invariant points to the 8 
tangency points as shown in Fig.3. In order to get more feature points. For these points which does 
not require to mark dots, there is no offset due to the perspective projection. 

 

 

Fig. 3. Bitangents and feature points extraction (a) Original image (b) Common tangents( solid lines: external 
tangents, dashed lines : internal tangents) and associated feature points (filled circles : tangent points, rings : bitangent 
intersection points. 

To obtain this tangency points, the block diagram of the figure below summarizes the different step: 

 

Fig. 4. Blok diagram of the tangency points approach 

4  Laser plane equation 

After calibration of the stereo system, the rigid transformation (Rs,ts)  from the second camera 
coordinate system to the first one for the ith view is given by: 
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                                                (14) 

Let us assume that optical distortions are corrected. As the projections are perspective ones, there 
exists a pure homography transformation H between points x(1) (of pixel homogeneous coordinates 
u(1)) and x(2)  (of pixel homogeneous coordinates u(2) ) : 

                                                       (2) (1)s u H u                                                                         (15) 

Where H is (3 × 3) matrix defined with only 3 unknown parameters and s is a scalar introduced 
in order to normalize the third component of u(2). In fact, the image  u(2) is the image of the back 
projection of  u(1) on the laser plane. 

The laser plane being defined by the distance d from the first projection center and by the normal 
vector n=(nx,ny,nz)T, the homography H can be expressed as:    
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The purpose is to find the unknowns   1, ,  Ta b c nd  which leads to the laser plane equation. 

The solution ( , , )Ta b c  can be estimated by minimizing the sum 
2

1

mn
T
i i

i
 


  where i  is the deviation 

vector between measured position (2)
iu  (corresponding to the ith measured position (1)

iu  ) and the 

current value (1)1 ( , , ) iH a b c u
s

.  

5  Experimental results. 

The method mentioned in section 2 for SPIV self-calibration has been applied on a pair of 1024 
× 768 1/2" CCD cameras (Sony XC 700) mounted on the Scheimpflug devices. The CCD cameras 
were equipped with f=50mm lenses focused on the measurement plane with a distance of 500 mm 
and viewing it at 45°. This new method is applied using printed target and macro-particle into laser 
sheet.  

5.1. Using printed target. 

 Five photographs of ellipses of printed target are recorded by each camera at different positions 
as shown in Fig. 5(a). The tangency points obtained using the method described in section 3 are 
illustrates in Fig. 5(b).  The results of calibration are shown in table 1.  As can be seen the use of 
bitangents allows accurate estimates: for example, the estimate of Scheimpflug tilt (theoretical 
values: 2.8 , 0       ) is 2.7 0.17 , 0.01 0.002       . Once can notice a relative 
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deviation (inferior to 1%) of image distance px with respect to focal length fx=8000 as the lens was 
separated from the CCD device for Scheimpflug tilt. 

 
(a) 

 
(b) 

     Fig. 5.  (a) Photographs of ellipses target at different positions  
                                        (b) Bitangents and tangency points for ellipses at different positions  

Intrinsic 
parameters 

px (pixel) py (pixel) u0 (pixel) v0(pixel) a1 a2 a3 α(degree) (degree) 

8067.52 8067.52 503.12 361.87 3.851 0.92 0.28 2.7 0,01 

Standard 
deviation 

0.807 

 

0.807 0.63 0.38 0.390 0.041 0.03  0.17 0,0 02    

                             Table 1. Results of self-calibration with printed target. 

5.2. Using macro particle into laser sheet 

We have keep the same cameras system. We have just replace the printed target  by  macro-
particles in the laser plane. An Argon continue laser sheet (λb =488nm, λv = 514.5nm) with a 
maximum power of 7W. The laser plane was located in the depth of field of the cameras.  

In these experiments, the target is a cross-sections of two 20-25 mm spherical soap bubbles filled 
with smoke were illuminated by laser sheet(about 1 mm thick). These Cross-sections marked the 
laser plane as two circular dots which can be imaged into large ellipses in image planes as shown in 
Fig.  6. 
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Fig.  6. test of two soap bubbles   

In order to calibrate the system of cameras in Scheimpflug model, 5 views of the target were 
recorded by each camera. The points belonging to the bitangents of the two ellipses (Fig. 7) are 
computed according the algorithm given in section 3. The cameras were calibrated using the 
tangency points. For each camera, reliable results are obtained as shown in table 2. 

  

Fig. 7.  Feature points belonging to the bitangents of the two ellipses 

 

Optimal parameters of the right cameras Optimal parameters of the left cameras  

 

 

 

Intrinsic parameters σ Intrinsic parameters σ 

u0 (pixel) 518.13 0.41 u0 (pixel) 513.35 0.37 

v0 (pixel) 379.28 0.23 v0 (pixel) 381.10 0.42 

f (pixel) 8011.33 0.17 f (pixel) 8010.92 0.19 

α(degree) 2.79 0.34 α(degree) 2.79 0.33 

(degree) 0.02 0.0023 (degree) 0.02 0.0021 

Table 2. Results of Scheimpflug self-calibration using macro-particles. 
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A 6th view is recorded by each camera and used to find the laser equation. Table 3 shows the 
results of the laser plane equation using the homographic method. θ1 is the angle under (ox), θ2 is 
the angle under (oy), θ3 is the angle under (oz).  

 

 

  

 Table 3.  Results of  the laser plane parameters 
 

6. Conclusion 

Self-calibration of Scheimpflug cameras allows easy calibration by viewing a target at different 
locations in the depth of field. The cameras parameters are recovered from the bundle adjustment 
technique using the new scheimpflug model proposed by Legarda[14].  The laser equation is 
obtained from a geometrical optimization. The misalignments between the laser sheet plane and the 
calibration plane always remains significant. We have proposed a method to combine the two steps 
in one level. However, the cameras parameters and the parameters of the laser plane can be obtained 
simultaneously. The target can be positioned directly in the laser sheet. This technique allows to 
getting rid of the problem of correcting misalignment between the calibration plane and the laser 
plane. 

Our approach is based on the use of a target formed by a macro-particle which can be entirely seen 
in the laser plane. The feature points are determined using the tangency points technique. Such a 
procedure leads to detect a fifteen feature points at a subpixel precision. The obtained experimental 
results confirm the relevance of the proposed method. 
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