

15th International Symposium on Flow Visualization
June 25-28, 2012, Minsk, Belarus

ACCELERATION OF SOME PRE- AND POSTPROCESSING ALGORITHMS
FOR CFD DATA ON 3-D UNSTRUCTURED GRIDS

P.A. VOINOVICH

Saint-Petersburg Branch of Joined Supercomputer Center
of the Russian Academy of Sciences, Saint-Petersburg, Russsia

Tel.: +7 812 297 2365; Email: vpeter@scc.ioffe.ru

KEYWORDS: CFD preprocessing, postprocessing, unstructured grids, algorithm acceleration, hash indexing

ABSTRACT: The 3-D unstructured grids based on tetrahedral grid elements are widely used in CFD
simulations for decades. The modern computer hardware offers resources sufficient to deal with the grids containing
many tens or even hundreds of millions of the grid objects N (grid nodes, tetrahedra, triangular faces, edges) using
common personal computers, and several orders of magnitude more using powerful computer installations. Some
intuitive algorithms for pre- and/or postprocessing of the grid and CFD data result in computational complexity
of O(N2), which makes their application to the large grids impractical. Here belongs creation of data sets for grid edges
or faces from the data base for tetrahedra referring to the grid nodes as their vertices. Extraction of domain boundary
faces (surface triangulation) from a nodal-tetrahedral data base represents another typical example. This can be done
using a temporary data set for all the triangular faces of the grid tetrahedra. For every tetrahedron, each of its 4 faces is
compared to the existing faces in the current data set: if the face already exists, it is marked as an internal face of the
computational domain, if not – the face is added to the data set. Finally, all the unmarked faces belong to the domain
boundary, as they were encountered only once, in contrast to the internal faces which separate two adjacent tetrahedra.

The above algorithm has a complexity of O(NTETRAHEDRANFACES), i.e. O(N2). This makes it extremely inefficient in
postprocessing, especially when an animated image is created from the data on a grid which varies in time, as in the
case of adaptively refined grids applied to a transient problem. Hash-indexing the faces can essentially reduce the
number of comparisons for each face to be tested. Several types of hash functions and hash tables were implemented. A
drastic improvement in computational efficiency was achieved using a three-dimensional hash table and indexing the
faces according to the Cartesian coordinates of their centers. However, even better result was obtained using a one-
dimensional hash table and a hash function based on the numbers of the grid nodes corresponding to the face vertices.
This reduced the computational complexity of the above algorithm to O(NTETRAHEDRA).

INTRODUCTION. The unstructured grids are widely used in numerical simulation because they can naturally fit
complex geometries and their flexible data structures support local grid modifications (e.g. solution-adaptive
refinement) according to the resolution demands. A regular desktop or notebook computer with RAM of a few
Gigabytes can process unstructured grids containing many millions of grid elements (grid nodes, faces, edges, control
volumes etc.). Numerical simulations using much larger data sets can be performed on high-performance
multiprocessor computer systems which are easily accessible via the modern telecommunication technologies.
However, some pre- and postprocessing operations have still to be performed on the user side with essentially limited
computer resources. For a grid composed of N elements and an algorithm of time complexity O(Nk), the runtime can
become inadmissibly long for k>1. A representative algorithm typical for pre- or postprocessing of grid data and
approaches to accelerate it is considered in the present paper in application to a 3-D unstructured grid composed of
tetrahedra.

UNSTRUCTURED GRID DATA SETS. A typical minimal data set of a tetrahedral unstructured grid contains a table
of grid nodes with their Cartesian coordinates Xi , Yi , Zi , i = 1 … NVERT , defining grid geometry, and a table of grid
tetrahedra with their references to the grid nodes as tetranedra vertices iv1i , iv2i , iv3i , iv4i , i = 1 … NTETR , defining grid
connectivity. The grid data set may additionally contain some other grid objects and references: a table of grid edges
with references to the nodes iv1i , iv2i , i = 1 … NEDGE ; a table of grid faces with references to the nodes iv1i , iv2i , iv3i ,
i = 1 … NFACE . The table of tetrahedra may contain references to the tetrahedra edges and/or faces.

P.A. VOINOVICH

ISFV15 – Minsk / Belarus – 2012

The grid-related CFD data can be associated with any of the above grid objects (tetrahedra, faces, edges, nodes). In our
3-D unstructured adaptive CFD code [1], for instance, the following data sets have been used: a table of grid nodes with
their Cartesian coordinates, control volumes, and dependent variables; a table of tetrahedra with references to the nodes
as their vertices and references to the edges, a “child” tetrahedron has also a reference to its “parent” tetrahedron; a table
of grid edges connecting two vertices of a tetrahedron with the references to the nodes as edge ends. The edge is
associated with the respective interface separating two control volumes surrounding each of the involved nodes. Some
additional work variables and flags are used to perform computations by the solver and to support the grid adaptation
routines.

A SAMPLE ALGORITHM OF COMPLEXITY O(N2). Consider a representative example. Suppose we have a
minimal grid data set as described above, i.e. a table of grid nodes and a table of tetrahedra referencing to the nodes as
their vertices. The task is to create a table of triangular grid faces referencing to the nodes as their vertices and labeled
to distinguish between the internal faces separating two adjacent tetrahedra and faces which belong to the computational
domain boundary. This sample problem could be a part of preprocessing, e.g. to set up the boundary conditions, or to
test the grid data integrity, as well as a post processing unit, e.g. for graphic presentation of the computed data at the
domain surface, as illustrated in Fig. 1.

Fig. 1 Visualization of an instant pressure distribution at the surface of an exhaust manifold.

For each tetrahedron itetr from 1 to Ntetr

For each of its 4 vertex triad

For each grid face iface from 1 to Nface

same
vertices?

yes Set up label
“internal”

Create a new grid face:
Nface = Nface + 1

Set up label “boundary”

no

For each tetrahedron itetr from 1 to Ntetr

For each of its 4 vertex triad

For each grid face iface from 1 to Nface

same
vertices?

yes Set up label
“internal”

Create a new grid face:
Nface = Nface + 1

Set up label “boundary”

no

Fig. 2 A straightforward algorithm completing the grid faces table.

An intuitive algorithm to fulfill the above task is presented in Fig. 2 and given below in a symbolic algorithm language.
For every tetrahedron, each of its 4 faces is compared to the existing faces in the current data set: if the face already

ACCELERATION OF SOME PRE- AND POSTPROCESSING ALGORITHMS
FOR CFD DATA ON 3-D UNSTRUCTURED GRIDS

ISFV15 – Minsk / Belarus – 2012

exists, it is labeled as an internal face of the computational domain, if not – the face is added to the data set as a

boundary face. One can easily see that the time complexity of the algorithm is O(NTETRNFACE), or O(N2), where N is the
number of all grid elements regardless of their type. The praxis shows that a straightforward implementation of this
algorithm on a modern personal computer for a grid containing a few million elements may turn impractical because of
a very long execution time. The problem becomes more acute in case of multiple post processing treatments, e.g. for
dynamic visualization.

Nedge = 0
For each tetrahedron itetr from 1 to Ntetr do
 For each tetrahedron face itetrface from 1 to 4
 { Vt1=vertetr(itetr,1), Vt2=vertetr(itetr,2), Vt3=vertetr(itetr,3);
 Vt1=vertetr(itetr,1), Vt2=vertetr(itetr,2), Vt3=vertetr(itetr,4);
 Vt1=vertetr(itetr,1), Vt2=vertetr(itetr,3), Vt3=vertetr(itetr,4);
 Vt1=vertetr(itetr,2), Vt2=vertetr(itetr,3), Vt3=vertetr(itetr,4) } do
 For each grid face iface from 1 to Nface do
 Vf1=verface(iface,1), Vf2=verface(iface,2), Vf3=verface(iface,3)
 If (min(Vf1,Vf2,Vf3)=min(Vt1,Vt2,Vt3) and
 mid(Vf1,Vf2,Vf3)=mid(Vt1,Vt2,Vt3) and
 max(Vf1,Vf2,Vf3)=max(Vt1,Vt2,Vt3)) then
 facetype(Nface)=‘internal’
 go to LABEL
 end if
 Nface = Nface + 1
 verface(Nface,1)=Vt1
 verface(Nface,2)=Vt2
 verface(Nface,3)=Vt3
 facetype(Nface)=‘boundary’
 end do
LABEL:
 end do
end do

HASH-INDEXING DATA FOR ALGORITHM ACCELERATION. Hash implementation. An essential reduction
in time complexity of the considered algorithm can be achieved by the elimination of unnecessary comparisons of faces

For each tetrahedron itetr from 1 to Ntetr

For each of its 4 vertex triad

For each grid face iface from 1 to kface
of same hash-index

same
vertices?

yes Set up label
“internal”

Create a new grid face: Nface = Nface + 1
Put it into the hash-index entry of the hash-table

Set up label “boundary”

no

For each tetrahedron itetr from 1 to Ntetr

For each of its 4 vertex triad

For each grid face iface from 1 to kface
of same hash-index

same
vertices?

yes Set up label
“internal”

Create a new grid face: Nface = Nface + 1
Put it into the hash-index entry of the hash-table

Set up label “boundary”

no

Fig. 3 An algorithm completing the grid faces table with hash-indexing.

P.A. VOINOVICH

ISFV15 – Minsk / Belarus – 2012

which are far from one another in some sense. This can be accomplished through implementation of hashing [2]. The
items for comparison (the faces) are to be distributed over multiple entries of a hash table; a single-valued hash function
applied to an item provides a hash index defining the table entry to which the item belongs; and finally, the comparisons
have only to be performed with the items of same hash index, i.e. referenced in the respective hash table entry, as shown
in Fig. 3 and also below using a symbolic language. If the number of hash table entries is comparable to the number of
grid objects N, and the hash function distributes the grid objects over the table entries uniformly, then the time
complexity of our algorithm becomes as low as O(N).

For each INDEX do {TABLE(INDEX) = ‘empty’} end do, Nface = 0
For each tetrahedron itetr from 1 to Ntetr do
 For each tetrahedron face itetrface from 1 to 4
 { Vt1=vertetr(itetr,1), Vt2=vertetr(itetr,2), Vt3=vertetr(itetr,3);
 Vt1=vertetr(itetr,1), Vt2=vertetr(itetr,2), Vt3=vertetr(itetr,4);
 Vt1=vertetr(itetr,1), Vt2=vertetr(itetr,3), Vt3=vertetr(itetr,4);
 Vt1=vertetr(itetr,2), Vt2=vertetr(itetr,3), Vt2=vertetr(itetr,4) } do
 INDEX = hash_function(Vt1,Vt2,Vt3)
 if(TABLE(INDEX) = ‘empty’) then
 Nface = Nface + 1
 verface(Nface,1)=Vt1, verface(Nface,2)=Vt2, verface(Nface,3)=Vt3
 facetype(Nface)=‘external’
 TABLE(INDEX) add Nface
 else
 For each grid face iface from 1 to kface of TABLE(INDEX) do
 Vf1=verface(iface,1), Vf2=verface(iface,2), Vf3=verface(iface,3)
 If (min(Vf1,Vf2,Vf3)=min(Vt1,Vt2,Vt3) and
 mid(Vf1,Vf2,Vf3)=mid(Vt1,Vt2,Vt3) and
 max(Vf1,Vf2,Vf3)=max(Vt1,Vt2,Vt3)) then
 facetype(Nface)=‘internal’, go to LABEL
 end if
 end do
 Nface = Nface + 1
 verface(Nface,1)=Vt1, verface(Nface,2)=Vt2, verface(Nface,3)=Vt3
 facetype(Nface)=‘boundary’
 TABLE(INDEX) add Nface
 end do
 LABEL:
 end do
end do

A coordinate-based hash function. An obvious solution to the selection of a hash function for the grid objects is based
on the coordinates of the latters. If Xmin and Xmax are the minimum and maximum coordinates of the computational
domain in X direction, and the hash table has entries from 1 to Ntable, then a function like

index = int[(Xc‒Xmin)/(Xmax‒Xmin) Ntable]+1
will distribute the grid objects among the table entries according to the coordinates Xc of their centers. In three spatial
dimensions, it is natural introducing a 3-D hash table and three hash functions operating with the grid object centers in
each coordinate direction: Xc, Yc, and Zc. A practical implementation of the described approach showed a drastic
reduction in computational time compared to the baseline algorithm. However, the 3-D hash table requires large
memory resources, while the hash functions do not work perfectly leaving multiple table entries unused, especially in
case of essentially non-uniform grids, as typically occurs by solution-adaptive refinement.

A simple and efficient hash function. An alternative hash function has been proposed based on the numbers of grid
nodes involved in the objects under consideration:

index = mod(Vf1+Vf2+Vf3,Ntable)
where Vf1, Vf2, Vf3 are the numbers of the grid nodes (i.e. respective entries in the table of nodes) associated with the
vertices of a given face, and Ntable is the hash table size. The practical experience has shown that a good choice for the
hash table size is that of the grid nodes table. This offers an additional benefit of efficient memory use, as the hash table
can utilize a work array for the grid nodes, which is not in use at the moment of face table construction. The above hash

ACCELERATION OF SOME PRE- AND POSTPROCESSING ALGORITHMS
FOR CFD DATA ON 3-D UNSTRUCTURED GRIDS

ISFV15 – Minsk / Belarus – 2012

function has demonstrated an excellent efficiency on the unstructured grids containing millions of nodes by reducing
the algorithm execution time from many hours to just a few seconds on a regular personal computer.

Application to the grid edges. A similar approach can be applied to the construction of the grid edges table and setting
up the references from the tetrahedra or faces to their edges. This can be a typical pre-processing task, as the edges are
often used in computations by CFD solvers, while the grid generation software may not provide such data. The above
coordinate based hash indexing can be applied to the edges directly. The node numbers based hash function in this case
reduces to

index = mod(Ve1+Ve2,Ntable)
where Ve1, Ve2 are the numbers of the grid nodes (i.e. respective entries in the table of nodes) associated with the ends of
a given edge.

CONCLUSION. During a practical work on CFD simulations using large 3-D unstructured grids we faced a problem
of unacceptably long execution time of some pre- and postprocessing routines constructing the tables of grid faces and
edges from the data for grid tetrahedra and nodes. The problem stems from the fact that the respective intuitive
algorithms have time complexity of O(N2). Hash indexing the grid data reduced the time complexity to O(N). A simpe
and efficient hash function has been proposed based on the grid nodes numbers and resulting in tremendous acceleration
of the algorithms.

References

1. Saito T., Voinovich P., Timofeev E., Takayama K. Development and Application of High-resolution Adaptive
Numerical Techniques in Shock Wave Research Center. In: Toro E.F. (ed) Godunov Methods: Theory and
Applications. Kluwer Academic/Plenum Publishers, NY, 2001, pp. 763–784

2. Donald Knuth The Art of Computer Programming. 3: Sorting and Searching (2nd ed.). Addison-Wesley, Reading,
Massachusetts, 1998

