
15th International Symposium on Flow Visualization
June 25-28, 2012, Minsk, Belarus

ALGORITHM OF FLOWFIELD VISUALIZATION

BY VECTOR GRAPHICS

M.S. IVANOV, A.V. KASHKOVSKY
Khristianovich Institute of Theoretical and Applied Mechanics,SB RAS, Novosibirsk, 630090, Russia

Corresponding author: Tel.: +7 383 330 81 63; Fax: +7 383 330 72 68 ; E-mail: sasa@itam.nsc.ru

KEYWORDS:
Main subjects: algorithm, flowfiled visualization
Fluid: scalar flowfield
Visualization method(s): vector graphics

ABSTRACT: The result of numerical modeling of many physical processesis a set of several fields of scalar quanti-
ties. Files with field visualization results usually have a large size. An algorithm is proposed, which allows a high-quality
scalable image of scalar fields to be stored in a file of a comparatively small size in the PostScript language format or any
other format supporting vector graphics.

1 Introduction
If a certain (usually real) number is put into correspondence to each point of a multi-dimensional space, then a scalar

field is said to be defined in this domain. In numerical modeling of physical phenomena, scalar values are usually defined
for centers or vertices of cells into which the computational domain is divided. A two-dimensional scalar field can be
presented with the use of lines of different levels (isolines). Three-dimensional fields are usually presented as isosurfaces
or isolines in a given secant plane. The space between the lines is filled with different colors depending on the scalar
values, and a correspondence scale is given.

Two basic methods are used for image construction and storage:
Raster method. The image is a fixed-size grid (matrix) composed of raster points (pixels) with different degrees of

brightness and different colors.
Vector method. The image is formed by a set of geometric primitives: points,lines, polygons, etc. Each geometric

primitive has its own size and color. The primitive characteristics are its type, color, and a set of coordinates that
describe the shape of the primitive.

The progress in computer performance and memory promoted anincrease in the computational grid size. Modern
grids sometimes contain hundreds of millions or even billions of cells. The most important phenomena often occur within
several neighboring cells; therefore, it is important to provide a high resolution of the image during field visualization to
capture these important phenomena. On the other hand, the resolution of various devices for printing images on paper is
permanently improved, which allows detailed images to be published in journals or books. This procedure also requires
high-resolution initial images.

If raster graphics is used, the resolution is improved by increasing the number of pixels. If a smooth change in the
scalar quantity between two neighboring cells is needed, itis necessary to have several pixels in each cell. Correspond-
ingly, the number of pixels in large-size cells can reach tens of millions. Even if rather effective compression algorithms
(PNG, JPG) are used, the file size often reaches several megabytes. Files with books, reports, or papers containing a large
number of such illustrations are so huge that it is difficult to send them by e-mail, read on the monitor, and especially to
print them, because the velocity of data transmission to printers does not grow so rapidly as the processor speed.

The use of vector graphics allows storage of high-quality images, which can be easily scales without resolution
deterioration. In most cases, visualization programs (see, e.g., [1, 2, 3]) consider each cell of the computational domain
separately. With the use of vector graphics, the image in each cell is formed by one (in the simplest case) or several
primitives. For each primitive, it is necessary to store at least its type and a set of its coordinates. For grids with millions
of cells, therefore, huge files multiply exceeding the pixelimage size are obtained.

The following questions arise in such a situation. It is possible to avoid considering each cell separately. Instead,
is it possible to form the image for rather large domains of the same color, thus substantially decreasing the number of
primitives and the file size? This is the idea implemented in the algorithm described below, which allows obtaining files
with an uncompressed vector image, which are commensurablein size with compressed raster files.

2 Construction of isolines
To form an image for a sufficiently large one-color domain, itis first necessary to determine the boundaries of the

latter. The domain boundaries are lines of an identical level (isolines) constructed for a specified set of values.

ISFV15 – Minsk / Belarus – 2012 1



Let a scalar field be specified on a grid composed of triangles,with known values at triangle vertices.In practice, it is
more convenient to have a list of vertex coordinates and scalar value(s) (there may be several of them) at the vertices, and
three reference (indicator, address, or index, depending on implementation) to these vertices are stored for a triangle. If
the grid consists of quadrangular cells, there is no particular need to transform this grid to a triangular one. In considering
such a cell, it is sufficient to divide it virtually and temporarily into several triangles. For a quadrangular grid, such
splitting into two triangles can be easily performed by drawing a diagonal. For each triangle, it is necessary to know
triangles having a common boundary with it. As the problem issolved in a plane and there are no intersecting triangles
by definition, each edge can have only one neighboring triangle.

If a structured grid is used, the neighboring triangle can beeasily calculated on the basis of grid topology. In the
case with an unstructured grid, the neighboring triangles are found in advance, and three references (for each edge of
the triangle) to neighbors are stored for each triangle. In the general case, the operation of determining neighbors hasa
complexity of the order of O(N2), whereN is the number of triangles, but there is also a fairly simple algorithm with a
complexity O(N ).

1. For each vertex, triangles including it are determined:

(a) a counter of triangles to which the vertex belongs is created for each vertex;

(b) All triangles are checked, and the counter of triangles of each vertex is increased by one;

(c) For each vertex, a certain amount of memory is allocated for the list of triangles including this vertex in
accordance with the counter of triangles;

(d) The triangles are checked again, and the number of the triangle is put on the list of three vertices forming this
triangle. It is important that the numbers in the lists are arranged in increasing order, because the triangles are
checked in increasing order.

2. The triangles are checked again to determine their neighbors:

(a) For each side of the next triangle, two vertices connected by this side are taken;

(b) A search for coincidences is performed in the lists of these vertices. As was mentioned above, the lists
are ordered; therefore, they are checked simultaneously: the list of the triangle with the smaller number is
checked;

(c) A coincidence means that the side belongs to the trianglewith this number. If the side belongs to two triangles,
there are two coincidences. One of the numbers coincides with the number of this triangle, and the second
coincidence is the number of the neighboring triangle on this side. If the side belongs to the domain boundary,
then there is one coincidence.

If the values of some scalar quantity in the vertices are known, the most natural way of approximation of this quantity
inside the triangle is linear interpolation. Then, the isoline inside the triangle is a segment of a straight line and, thus, can
cross only two sides of the triangle. It is better to perform isoline interpolation or approximation, if needed, for the entire
isoline than at a level of the triangle. The edge intersection points are determined by linear interpolation. To construct the
next point, it is necessary to pass to the neighboring triangle that has a common side with the current triangle.

Rather often (especially for grids with very small cells), the isoline remains close to a straight line within several cells.
In this case, it is sufficient to store and use the first and lastpoints of such a segment, and all intermediate points (which
belong to this segment or are very close to it) can be omitted from considerations.

Isoline construction is continued until the next point coincides with the starting point (“closed” isoline) or until the
point is found to be on the grid boundary (“open” isoline). After that, the beginning of a new isoline is sought by means
of successive checking of the cells, and the process is repeated. The cells in which the isoline of a given level is already
constructed are marked, and such cells are skipped in searching for a new isoline of the same level. For reasons that will
be explained below, it is important to known in isoline construction whether the domain with greater values is located on
the right (let us call it the “forward” direction of the isoline) or to the left (“backward” direction).

With isolines being constructed, it is possible to create a good-quality image. Figure 1 shows the density field of a
supersonic gas flow formed by irregular (Mach) reflection of an oblique shock wave from a solid surface. The calculations
were performed on a uniform rectangular grid1000 × 500 cells. The image is formed by 50 isolines. The size of the
uncompressed vector PostScript file of this image, which wasobtained by the method described above, is 25 Kb. The
same image converted to a PNG file with a resolution of 2000× 1000 pixels (four pixels per cell) is 81 Kb. Certainly,
we can talk about the degree of compression and smoothing andabout the image resolution, but it is clearly seen that
an uncompressed text file containing readily scalable vector graphics for a real problem may turn out to be several times
smaller than the corresponding pixel image.

In academic papers, however, one color in the field most oftencorresponds to a certain range of values. The entire
image is colored, and the changes in the scalar quantity are estimated by analyzing the changes in color. Actually, the
space between two neighboring isolines should be “filled” with an appropriate color (like it shown of Fig. 2). For this
purpose, single-color domains should be identified.

ISFV15 – Minsk / Belarus – 2012 2



Figure 1: Isolines. 50 levels Figure 2: Isolines filled by collors. 50 levels

3 Construction of single-color domains on the basis of isolines
Each two neighboring isolines are boundaries of a single-color domain. As isolines do not cross each other, some

part of the boundary has to be completed. If isolines are onlyopen, then the boundary is completed along the domain
boundary. In practice, however, there are no fields with openisolines only. There are always closed isolines present. Most
probably, there exist some algorithms for connecting two (and more) nested closed isolines with an additional segment.
The search for such a segment, however, is a rather complicated task in the general case. It should not cross other isolines
and may be absent altogether: if the last isoline of the levelis considered, its entire internal domain is filled with one
color, and the search for other isolines in this domain is meaningless. Thus, connecting two neighboring isolines requires
a fairly complicated analysis of the scalar field and an algorithm that takes into account various possible specific features
of this field.

Another approach to image formation is proposed here. In this approach, smaller domains are drawn above larger
domains; thus, the image is formed. Indeed, let us consider three neighboring closed isolinesL1, L2, andL3, with the
levelsL1 < L2 < L3. Let L1 have the greatest area. Obviously,L2 is insideL1, andL3 is insideL2. L3 cannot be
located insideL1 without being simultaneously located insideL2: this would mean a jump in the value or several values
at one point of the field. As these figures are nested, their boundaries do not intersect, the area ofL2 is smaller than the
area ofL1, and the area ofL3 is smaller than the area ofL2. Thus, drawing all three figures in decreasing order in termsof
their area (L2 aboveL1, andL3 aboveL2), we obtain a correct pattern of alternation of isolines. Obviously, this approach
is also valid in the case withL1 > L2 > L3.

An undoubted advantage of this approach over the method of identification of single-color domains is its simplicity:
there is no need to construct additional segments, to analyze the mutual location of isolines, etc. Moreover, this approach
offers another principal advantage. In identifying single-color domains, each isoline is a boundary between two domains:
with a greater value of the examined quantity and with a smaller value, i.e., the coordinates of this isoline are enumerated
twice. In the method proposed here, there is one boundary of the figure, and the isoline coordinates are enumerated only
once, which halves the image size.

As the boundary of the figure should be closed, open isolines are completed to become closed isolines. The open
isoline is supplemented with a segment of the computationaldomain boundary, which connects this isoline with an isoline
of the same level. After that, the boundary of the figure goes along the new isoline up to the next point on the boundary,
passes over the boundary, etc., until it becomes closed on the initial isoline. The order of this round pass is chosen so that
the domain with greater values is on the right of the boundary(“direct round”).

As a method for automatic construction of closed isolines only, we can proposed to add a dummy series of thin cells
along the entire domain boundary with the values of the scalar quantity being many times (e.g., million times) smaller
than the value of the smallest specified level; in this case, there will be never any open isolines, and the lines along the
domain boundary will almost coincide with the latter.

After all domains are formed, it is necessary to calculate their area. It is obtained by integrating the areas of trapezoids
whose vertices are the vertices of each segment and projections of these vertices onto the lower boundary of the domain:

S =

N∑

i=1

(Xpi+1
−Xpi

) · (Ypi+1
+ Ypi

)/2

(N is the number of segments of the isoline;Xp andYp are the coordinates of the pointP .
As the domains are described by an ordered set of points, sometrapezoids (with an increasingX coordinate) have

positive areas, and others have negative areas. With the clockwise round, the area of the figure is positive. As was
mentioned above, the isolines are constructed so that the greater values are on the right; therefore, this domain shouldbe
filled with a color corresponding to the higher level. If the area is negative, it means that the round is counterclockwise,
there is a region of reduced values inside, and the domain is filled with a color corresponding to the previous (lower) level.

The domains are ordered with the help of an arbitrary algorithm of sorting in accordance with the absolute value of
the area. Drawing the field begins from filling the entire computational domain with a color that should be “outside” the
greatest domain. After that, all domains are drawn in decreasing order in terms of their area.

ISFV15 – Minsk / Belarus – 2012 3



Figure 3 shows the same field as that in Fig. 1, but with domainsfilled with various colors. Fifty levels are again used.
The size of the file in the PostScript format is 25.4 Kb. As the points of the isolines are enumerated only once, the file
size is practically the same (greater by 2%) as the size of the file with the isolines only. The same image converted to a
files of the PNG format with a resolution of four pixels per cell (2000× 1000) has a size of 72 Kb.

Obviously, the file size increases with increasing number oflevels (number of isolines). Thus, the size of the file with
the image of the same field constructed with 250 levels (see Fig. 4) in the PostScript format is 120 Kb. In the PNG format
with a resolution of 2000× 1000 pixels, the file size is 173 Kb.

Figure 3: Filling with colors, 50 levels Figure 4: Filling with colors, 250 levels

4 PostScript language
The proposed algorithm is developed for storing images in the PostScript language format, but it can be applied to

any other vector graphics format. The file size can be substantially reduced by using the possibilities of the PostScript
language appropriately.

The PostScript language [4, 5] was developed by John Warnockat Adobe Systems in 1982 as a simple standard
language for describing the text, drawings, and simple images on the printed page. It is important that the description of
pages in PostScript is independent of the device on which thepage will be reproduced. Files in the format of this language
are used as illustrations in printed arts, in particular, inthe LaTeX document preparation system (it is in this system that
the present paper was prepared). There are numerous programs for displaying these files or for their conversion to the
PDF format (also developed by Adobe Systems and actually being a “compressed” version of PostScript).

A PostScript device (printer, monitor) is a device including a PostScript language processor. The language processor
takes atext file with a code written in the PostScript language from the computer and transforms it to a pixel form in
accordance with the resolution of this device. After that, it is printed or displayed on the monitor.

The data in PostScript are numbers, arrays, rows, and symbols. Manipulation with these data is performed through
a stack into which data (operands) from the initial file are first fed and an operator, which chooses a necessary number
of operands from the stack and urges the language processor to perform these or those actions. The numerical result of
operator execution (if any) is also placed into the stack, with the operands already stored in the stack being shifted. For
instance, the arithmetic operation27/(4 + 5) looks as follows:

4 5 add 27 exch div

Here, the operatorexch exchanges the result of addition with the help of the operator add and the number 27 before the
operation of divisiondiv. Such style of programming, where the operands are defined earlier than the operator, is called
postfix notation or reverse Polish notation. The set of operands or operators can be united into procedures. For instance,
the notation

/R { 1. 0. 0. setrgbcolor} def

creates the procedureR whose initiation establishes the red color as the current color.
The image is formed in the coordinate system with the origin in the bottom left corner of the image, the X axis is

directed to the right, and the Y axis is directed upward. The set of operators is rather large, and only the key operators
affecting image formation within the framework of this algorithm are considered in Table 1.

The listing of the file given below shows a red trapezoid encircled with a black frame (see Fig. 5). After a necessary
title, which is a sign of a PostScript file, the first four linesof this listing are responsible for drawing the trapezoid itself:
the color for filling the figure is defined (red), the trapezoidcontour is drawing, and the contour is filled with the color. In
the next four lines, the contour is drawn with the black colorin a similar manner:

Let it be one of the domains to be displayed. Bearing in mind that there are many domains of this kind, the description
of the figure can be written more compact, using the followingcapabilities of the PostScript language:

• As all numbers are given with three decimal digits, it is possible to use the scale of 0.001, which allows passing to
integer numbers, avoid the dot with retaining the same accuracy, and reduce the number recording by one byte.

ISFV15 – Minsk / Belarus – 2012 4



Operator Operands Purpose
scale sx sy Set x and y scales of the image
setrgbcolor r g b Set the current color defined by the intensity of red (r), green (g), and blue (b)
setlinewidth w Set the line width equal to w
moveto x y Move to the point x,y without drawing
lineto x y Draw a line to the point x,y
rlineto rx ry Draw a line to the point shifted by rx,ry with respect to the current location
closepath - Connect the first and last points, thus, creating a closed figure
fill - Fill the closed figure with a color
stroke - Show the image of the figure formed
showpage - Finalize the page image
gsave - Save the current state
grestore - Restore the saved state

Table 1: Most important operators of the PostScript language

%!PS-Adobe-2.0
2 setlinewidth

1 0 0 setrgbcolor
121.896 286.123 moveto 192.574 286.123 lineto
192.574 457.843 lineto 182.574 457.843 lineto
closepath fill stroke

0 0 0 setrgbcolor
121.896 286.123 moveto 392.574 286.123 lineto
392.574 457.843 lineto 352.574 457.843 lineto
closepath stroke

showpage

Figure 5: Example of the trapezoid image.

• All repeated operators (or their combinations) can be re-defined with single-letter procedures.

• Drawing from the first point is performed in relative coordinate; in this case, one of the coordinates for horizontal
and vertical lines will be 0, which occupies one byte in the file. Moreover, as the isoline usually consists of small
(as compared with the domain size) segments, the relative coordinates require a smaller number of symbols for their
presentation than the absolute coordinates.

• After drawing the figure, it is possible to save the current state by using the gsave operator, fill the domain with
a color, then restore the state by using the grestore command(after that, the image of the red trapezoid is already
formed, but the language processor is in the state when the figure is only defined), change the color, and draw the
contour. With this procedure of drawing, there is no need to enumerate the coordinates of the line for the contour
again.

The listing for such a file is shown below:

%!PS-Adobe-2.0
/B {1 0 0 setrgbcolor} def
/C {0 0 0 setrgbcolor} def
/M {moveto} def
/R {rlineto} def
/D {closepath gsave fill stroke grestore C stroke} def
0.001 0.001 scale
2000 setlinewidth

% This is direct plot of the trapeze
B 121896 286123 M 170678 0 R 0 171720 R -41000 0 R D

ISFV15 – Minsk / Belarus – 2012 5



showpage

It is seen that the text directly responsible for drawing (definitions of the procedures can be ignored because they are
used only once in the file) decreased five-fold: from 259 to 53 bytes. A similar procedure allows drawing fields with color
filling and with isolines, with the file size being not increased. Figure 2 shows the same field as in Fig. 3, but with the
isolines shown by the black color. As the difference in only in the procedure used, the file size is absolutely the same.

5 Comparison of the file size of images obtained by different methods
The size of the file with the vector image obtained by using theabove-described algorithm depends more on the

distribution of the scalar quantity than on the grid size. For instance, Figs. 6 and 7 show the distributions of pressure
and Mach numbers (ratio of flow velocity to velocity of sound)obtained in studying the viscous structure of the flow in
the case of the Mach reflection of the shock wave from the planeof symmetry (see [6]) for the flow Mach number M=4.
The modeling was performed on the basis of the numerical solution of the Navier–Stokes equations for a compressible
gas with the use of a shock-capturing numerical method explicit in time and based on a fifth-order WENO scheme for
convective terms and the fourth-order compact central approximation for diffuse terms. The numerical algorithm used
was described in [7]. The size of the computational domain was 1600×800 (1.28 million) cells. The sizes of the files
with the image constructed for 250 levels in the PostScript format are 121 Kb and 88 Kb, respectively (the difference is
about 30%).

Figure 6: Pressure, 250 levels Figure 7: Mach number, 250 levels

The use of other methods of modeling physical processes, however, can lead to a significant increase in the file size.
For instance, Figs. 8 and 10 show the results of modeling an axisymmetric flow around a promising reentry vehicle for
an altitude of 75 km and velocity of 7.6 k/s, which was performed with a SMILE software system [8] by the Direct
Simulation Monte Carlo (DSMC) method [9], [10]. The computational grid consisted of 1490×1200 (1.79 million) cells

Figure 8 shows the density field constructed for 50 levels. The file size is 199 Kb. Figure 9 shows the temperature
distribution, also for 50 levels. The file size is 492 Kb. Though the grid size is only 40 % greater than in the previous
example, the file sizes increase more appreciably (despite the use of a smaller number of isolines), and the difference in
the sizes of files for different physical quantities in the same calculation is also significant. Such a considerable increase
in the file size occurs because of statistical fluctuations, which are always inherent in DSMC computations and because of
which the isolines have a “wavy” structure. There are also many small “spots,” i.e., local dips and humps of temperature.
If spots whose area is smaller than the area of four cells are not stored in the file, then the image shown in Fig. 10 is
obtained. The size of the resultant file is 400 Kb, which is smaller almost by 20 %. The effect of statistical noise is clearly
seen in Fig. 11, which shows a fragment of the image in Fig. 10 magnified by a factor of 10 (near one isoline slightly
above the trailing edge of the space vehicle). The isoline isshown by the black color, and its complicated configuration,
which requires a large number of segments for drawing, is clearly seen. In this case, the file size can only be reduced by
smoothing, i.e., replacement of the isolines by smoother curves with a smaller number of segments. This illustration again
demonstrates the advantage of the vector presentation of data: even significant magnification does not affect the image
quality, which is not always possible in pixel images.

In the last example, for 50 levels of isolines, the file size isstill acceptable for a paper. With increasing number of
levels, however, the file size rapidly increases to undesirable values. Thus, the file size is 833 Kb for 100 levels and 2.1
Mb for 250 levels. The pixel versions of these illustrationshave much smaller sizes, but the difference is still visible, as
was demonstrated with pilot printing of the vector image andof the pixel image obtained from it (with a resolution of
1490×1200) on a printer with a resolution of 600 dpi.

As the algorithm presented in this paper is always contrasted with the pixel image, Table 2 gives the file sizes for
all illustrations in this paper, which were obtained by the algorithm described above, converted to the PNG format (JPG
files have practically the same size), and, for some fields, obtained by the traditional algorithm (visualization of eachcell
independent of other cells).

ISFV15 – Minsk / Belarus – 2012 6



Figure 8: Density, 50 levels Figure 9: Temperature, 50 levels

Figure 10: Temperature, 50 levels, filter Figure 11: Temperature, 10-fold magnification

The files in the column entitled “Traditional algorithm” were obtained by three different codes indicated by the corre-
sponding index in brackets: tecplot (t), gnuplot (g), and kapic (k); the latter code was developed by the author. As each
code uses its own notation of Postscript operators, the file sizes can substantially differ from each other.

The file sizes for Figs. 10 and 11 obtained by the proposed algorithm are identical, because these are the same
files, with the only difference that the second file contains PostScript operators of ten-fold magnification, shifting toa
necessary point, and truncation of the image going outside the limits of the “window,” and the procedure with drawing
isoline contours is used (as they are both written in the file,they were simply renamed).

A comparison of the sizes of files obtained by the proposed algorithm and the traditional algorithm is impressive. In
particular, for fields on the 1600×800 grid, the file obtained by the proposed algorithm is smaller by a factor of 700! It is
seen that the traditional algorithm is unsuitable for largegrids altogether. Illustrations greater than 60 Mb cannot be used
in papers. Such a large size can be easily explained. In the traditional algorithm, each cell should be drawn. Let it be a
quadrangular cell of one color. For drawing this cell, it is necessary to enumerate the coordinates of its vertices (4×2 =
8) and invoke the drawing procedure. Even if each coordinateand procedure name is presented by one symbol, there are
18 bytes together with separating spaces. If the cell contains isolines, the size increases in proportion to the number of the
resultant domains. Therefore, the file size for a field presented by a million of cells is several times greater than 18 Mb,
which is actually seen from Table 2.

Except for DSMC computations, the size of files obtained by the proposed algorithm is smaller than or commensurable
with the size of files in the PNG format. For presentation of DSMC results, it is possible to use both vector graphics and
high-resolution PNG files. In each particular case, however, the most important parameter should be chosen: quality of
the image or file size. Availability of a vector image (even ina large file), however, substantially facilitates the procedure
of creating pixel files with a required resolution. Nevertheless, the use of smoothing of DSMC results allows considerably
reduction of the file size and is preferable.

As it was mentioned above, development of the proposed method of compact visualization of scalar fields was driven
by the desire to have illustrations in vector graphics in small-size files to be used in publications. This paper was prepared
in the document preparation system LATEXand contains ten illustrations of sufficiently large scalar fields. The size of the

ISFV15 – Minsk / Belarus – 2012 7



Number Grid Number File size (in kB):
of the figure size of levels Proposed Traditional PNG

algorithm algorithm resolution size
1 1000×500 50 25 500×250 15

2000×1000 84
2 1000×500 50 25.4 2000×1000 103
3 1000×500 50 25.4 17793(g),21093(t) 2000×1000 72.3
4 1000×500 250 120 29202(t) 2000×1000 173
6 1600×800 250 121 68409(t),89975(g) 1500×756 100

3000×1512 267
7 1600×800 250 88 67947(t) 1500×756 87

3000×1512 196
8 1490×1200 50 199 57714(k) 1490×1200 34.5

3000×2416 98.6
9 1490×1200 50 492 60010(k) 1490×1200 59.2

3000×2416 162
10 1490×1200 50 399 1490×1200 52.8

3000×2416 148
11 1490×1200 50 399 1490×1200 47

3000×2416 117
1490×1200 100 833 1490×1200 76.5

3000×2416 211
1490×1200 250 2110 1490×1200 132

3000×2416 364

Table 2: File size for different fields and algorithms

file with this paper is 2.2 Mb in the PostScript format and 1.7 Mb in the PDF format.
Conclusions
The proposed algorithm of visualization of scalar fields with the use of vector graphics allows high-quality scalable

images of fields to be stored in moderate-size files. This algorithm is recommended for programs of visualization of the
calculated results and for preparing illustrations for publications.

Acknowledgement
The authors is grateful to P. V. Vashchenkov and D. V. Khotyanovskii (researchers at the Khristianovich Institute of

Theoretical and Applied Mechanics of the Siberian Branch ofthe Russian Academy of Sciences, Novosibirsk) for the
results of calculations.

References

[1] Tecplot, Official website [Electronic resource], http://www.tecplot.com/

[2] Gnuplot homepage, Official website [Electronic resource], http://www.gnuplot.info/

[3] GL2PS: an OpenGL to PostScript printing library, Official website [Electronic resource], http://geuz.org/gl2ps/

[4] F. Deumling and D. Sillescu,PostScript programming language(translation from german), Fizmatlit, Moscow, 1993.

[5] PostScript language reference manual, Adobe Systems, 2nd ed.

[6] D.V. Khotyanovsky, Y.A. Bondar, A.N. Kudryavtsev, G. V.Shoev, and M. S. Ivanov,Viscous effects in steady
reflection of strong shock waves.AIAA J., 2009, Vol. 47, No. 5, pp. 1263– 1269.

[7] A.N. Kudryavtsev and D.V. Khotyanovsky,Numerical investigation of high speed free shear flow instability and
Mach wave radiation.Int. J. Aeroacoustics, 2005, Vol. 4, Nos. 3-4, pp. 325-344.

[8] M.S. Ivanov, G.N. Markelov, and S.F. Gimelshein,Statistical simulation of reactive rarefied flows: numerical ap-
proach and applications.AIAA Paper No. 98–2669, 1998.

[9] G.A. Bird, Molecular Gas Dynamics.Clarendon Press, Oxford, 1976.

[10] G.A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows.Clarendon Press, Oxford, 1994.

ISFV15 – Minsk / Belarus – 2012 8


