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ABSTRACT: New geometrical aspects of homogeneous isotropic turbulent flow fields obtained from direct 
numerical simulations (DNS) are visualized and analyzed based on the definition of different flow inherent geometries. 
The latter are dissipation elements based on the instantaneous turbulent kinetic energy field and streamline segments. 
Dissipation elements are intimately related to local extreme points of the underlying scalar field which are connected by 
gradient trajectories. Streamlines follow the local frozen velocity field and are partitioned into segments based on local 
extrema of the absolute value of the velocity along the streamline. These local extrema define an isosurface in space 
which also contains the local and global extrema of the instantaneous turbulent kinetic energy field and thus the 
endingpoints of dissipation elements. This isosurface is analyzed in various regards with respect to the geometry of 
dissipation elements as well as streamlines and streamline segments. The topological behavior of the isosurface is 
theoretically explained in the vicinity of stagnation points which, being absolute minima of the turbulent kinetic energy 
field, are also situated in the isosurface. An expansion of the isosurface shows that locally, indifferent of the type of 
stagnation point, it is a degenerated cone-type surface where two folds touch.  
 

INTRODUCTION: In the course of turbulence research a manifold of different strategies has been devised to 
explain the complex motion of a turbulent fluid flow. The spectrum of approaches reaches from purely mathematical 
theories based solely on the Navier-Stokes equations, such as two-point correlations which have yielded the famous and 
celebrated 4/5th law [1], to dimensional arguments which has led to the prediction of the -5/3rd scaling of the energy 
spectrum in the inertial subrange [2]. Another approach which has greatly benefited from the recent advances in high 
performance computing is to analyze turbulent inherent geometries. In 1971, Corrsin [3] asked the question: “What 
types (of geometry) are naturally identifiable in turbulent flows?”. In this spirit, vortex structures have been identified 
and analyzed for instance by She et al. [4] and Kaneda et al. [5]. They were found to form tubes in regions of high 
vorticity, while a sheet-like structure was identified in regions of low vorticity. However, vortex tubes and sheets do not 
allow a unique and space-filling decomposition of the flow field into unambiguous sub-ensembles. This problem was 
overcome by Wang and Peters [6, 7] in their concept of dissipation elements, an approach which has its roots in early 
works by Gibson [8] who analyzed the role of extreme points in turbulent scalar mixing processes. This concept, based 
on gradient trajectories, allows the decomposition of turbulent scalar fields into smaller sub-units. By calculating 
gradient trajectories in direction of ascending and descending scalar gradients, a local minimum and a local maximum 
point are reached. Dissipation elements are then defined as the spatial region from which all gradient trajectories reach 
the same pair of maximum and minimum points in a scalar field. They may then be parameterized by the linear distance 
between and the scalar difference at the extreme points which makes them amenable to statistical analysis. The most 
important feature of dissipation elements is that they are space-filling and unambiguous, meaning that at any instant in 
time the turbulent scalar field can be decomposed in a determined manner. Then, based on the much simpler conditional 
statistics within the dissipation elements and the knowledge of their statistical distribution (in terms of joint probability 
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density functions) the complicated statistics of the entire scalar field can be reconstructed. Successful examples of this 
approach can be found in [7] and [9]. 

One major shortcoming of the theory of dissipation elements is that it is only applicable to turbulent scalar 
fields. In order to also apply this successful theory to the turbulent velocity field itself, Wang [10] proposed to study 
streamlines in turbulent velocity fields. The geometrical properties of particle paths (the analogon to streamlines in an 
evolving turbulent field) have for instance been studied by Rao [11], Braun et al. [12] and Scagliarini [13], whose ideas 
have been extended to the geometrical properties of streamlines by Schaefer et al. [14]. Streamlines are not Galilei 
invariant, meaning that the chosen frame of reference determines the streamline topology. Thus, one has to choose an 
appropriate frame of reference when analyzing turbulent flow fields based on streamlines. In the course of this work this 
frame of reference will be the fluctuating velocity field with zero mean for two reasons: first, from a geometrical point 
of view we are only interested in the geometry and topology of the fluctuating field, which is often used to isolate 
"pure" turbulent physics without the interaction with solid walls, mean gradients or alike. Second, it has been shown 
that there exists a frame, in which the so called streamline persistence is maximized [15]. Streamlines are considered 
persistent if their geometry changes slowly enough for a particle to approximately follow their path for a significantly 
long time. In that case, particles initially close to each other will only separate once they approach a straining stagnation 
point, where streamlines diverge. For isotropic turbulence, the case considered in this work, it could be shown that the 
appropriate frame of reference is the one where all mean velocity components vanish, i.e. the fluctuating velocity field 
[16]. In chapter 2 the mathematical basis of the isosurface is laid out and based on DNS data geometrical relations of 
streamlines, extreme points and dissipation elements are visualized together with the isosurface. In chapter 3 the focus 
is laid upon the local behavior of the isosurface in the vicinity of stagnation points and its local topology is shown and 
visualized. Concluding remarks are given in the last chapter.  

 

THE du/ds=0 ISOSURFACE AND ITS CHARACTERISTICS: In an evolving turbulent velocity field 
,௜ݔ௜ሺݑ  in the frozen field from any point in space by following the ݐ ሻ, streamlines can be traced at any instantݐ

normalized tangent vector ݐ௜ ൌ ݑ where ,ݑ/௜ݑ ൌ ሺݑ௜ ݑ௜ሻଵ/ଶ denotes the absolute value of the velocity vector. 
Streamlines are, different from gradient trajectories in a scalar field, a-priori infinitely long, unless they hit a stagnation 
point, in which all three velocity components vanish and they diverge. Wang [10] has proposed to divide streamlines 
into segments based on local extreme points of ݑ along the streamline. Segments are then bound by two extrema, i.e. 
points where the velocity gradient in streamline direction,  

௦ݑ ؠ
డ௨

డ௦
ൌ ௜ݐ

డ௨

డ௫೔
, (1) 

vanishes. From the above definition it follows readily that streamline segments end and begin where ݑ௦ ؠ ݏ߲/ݑ߲ ൌ 0. 
Based on eq. (1) we see that this condition defines an isosurface of the scalar field ݑ௦ which possess some remarkable 
features to be explored in the current work. 

The isosurface divides space into two regions, namely a region, in which ݑ௦ ൐ 0 containing all positive 
segments to be denoted with (+) and a region within which ݑ௦ ൏ 0, containing all negative segments to be denoted with 
(-). Thus, streamlines starting from an arbitrary point in space will intersect the isosurface thereby entering alternatingly 
into regions denoted with (+) and (-) signs. The situation is illustrated in Figure 1(a) where the isosurface as well as a 
streamline is shown for a turbulent flow field calculated by DNS in three-dimensional space.  
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Figure 1: (a)  Isosurface defined by ࢙࢛ ൌ ૙ and streamline. (b) Variation of ࢛ along the streamline over the arclength (arbitrary 
units) with segments. 

The streamline enters the box from the top left corner and intersects the corrugated isosurface five times before 
leaving the box at the lower right corner. The five intersections define the boundaries of four segments along the 
streamline. Figure 1(b) shows the corresponding variation of ܝ along the same streamline in a one-dimensional plot, 
where the four segments are demarcated with dotted lines whose locations correspond to the intersections shown in 
Figure 1(a). The variation is plotted over the arclength ܛ so that the horizontal distance between two dotted lines 
corresponds to the length ܔ of the segment, while the velocity difference at the ending points, i.e. the difference at the 
points where the streamline intersects the isosurface is labeled ઢܝ.  

Figure 2 shows a bundle of streamlines passing alternatingly through positive and negative regions of space. It 
is well visible that in the positive region (red part of the streamlines) the streamline bundle contracts due to mass 
conservation, while in the negative region (blue part of the streamlines) the bundle diverges. In fact, it has been shown 
in [10] that the Gaussian curvature of streamlines, which corresponds to the divergence of the unit tangent vector ti, 
ࡳࣄ ൌ ࡳࣄ can be expressed by virtue of the continuity equation as ࢏࢞ࣔ/࢏࢚ࣔ ൌ െ࢛/࢙࢛ yielding a divergence of bundles in 
negative regions and a contraction in positive ones. In addition, this relation shows that the Gaussian curvature vanishes 
on the isosurface so that locally neighboring streamlines are parallel when passing through the isosurface. In that sense 
the isosurface could also be called “zero divergence surface of streamlines”.  

Apart from these properties, which are particularly important for streamline-based analyses, it follows readily that all 
local extreme points (of the field of the absolute value of the velocity ݑ and the turbulent kinetic energy ݇ ൌ  .ଶ/2, i.eݑ
points where ݑ׏ ൌ ݇׏ ൌ 0, lie in the isosurface, as 

݇׏ ൌ ݑ׏ݑ ൌ 0 ֞ ݑ׏Ԧݐ ൌ 0  (2) 

Figure 3(a) shows the distribution of extreme points of the instantaneous kinetic energy field in space where 
red dots mark local maximum points and blue dots local minimum points. Green dots indicate stagnations points, i.e. 
critical points of the velocity field where locally all velocity components vanish simultaneously ݑ௜ ൌ 0. It is obvious 
that as ݑ ൒ 0 stagnation points form a sub-group of local minimum points, namely absolute minima of the turbulent 
kinetic energy. The local topology of the isosurface in the vicinity of the stagnation point deserves special attention and 
will be subject of the following chapter. 

The isosurface itself can further be subdivided into two (not necessarily simply connected; isolated islands can exist) 
parts, one of which contains all minimum points (minimal surface), while the other contains all maximum points 
(maximal surface). The demarcation line between these two regions is the ensemble of points where streamlines are 
tangent to the isosurface. Formally, this amounts to the condition ݐ௜݊௜ ൌ  0, where ݊௜ denotes the unit normal vector to 
the surface.  
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Figure 4 shows such a partitioning of the surface into minimal (light grey) containing all local minimum points and a 
maximal region (dark grey) containing all local maximum points. 

 

 

Figure 2: Bundle of streamlines passing alternatingly through positive (red) and negative (blue) regions of space. 

 

Figure 3: (a) Local extreme points of the ࢑‐field. (b) ࢙࢛ ൌ ૙ isosurface containing all extreme points. Blue dots: minimum points, 
red dots: maximum points, green dots: stagnation points. 

From the above analysis it follows that the theory of dissipation elements (based on the instantaneous ݑ- or ݇-
field, respectively), is closely connected to the isosurface and thus to the theory of streamline segments, as dissipation 
elements start and end in local extreme points which all lie in the isosurface. Figure 5 shows two examples of such 
elements and their gradient trajectories based on the instantaneous ݇-field. As is obvious, dissipation elements are 
corrugated and intertwisted structures which can intersect one or more folds of the surface. 
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Figure  4:  Subdivision  of  the  ࢙࢛ ൌ ૙  isosurface  into  minimal  (light  grey)  and  maximal  (dark  grey)  surface  regions  with 
demarcation line (black). Minimum points (blue dots) of the ࢑‐field lie in the light grey region, maximum points (red dots) in the 
dark grey region of the surface. 

However, they always (as they begin in a minimum and end in a maximum) connect a minimal with a maximal 
surface. Nonetheless, the fact that the ending points must at any instant lie in the isosurface has the implication that the 
dynamics of extreme points of the field are intimately related to those of streamline segments. The intimate relationship 
between the dynamics governing local extreme points is especially important for small dissipation elements. These 
connect two adjacent extreme points of opposite sign and will drift towards and annhilate each other once they join [6]. 
As both extreme points have to stay on the isosurface during this process but on two different sides of the demarcation 
line between minimal and maximal surface regions, the two will approach the demarcation line until they annihilate 
each other. In that sense the demarcation line plays the role of a sink for small dissipation elements. On the other hand, 
the gradient trajectories filling the space of larger elements will be likely to intersect the isosurface, as can be observed 
for the left dissipation element for example in figure 5 close to the minimum point.  

 

 

Figure 5:  Two examples of dissipation elements embedded in the ࢙࢛ ൌ ૙ isosurface with local extrema. 
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Let us denote with ܾ௜ ൌ  ሺ߲݇/߲ݔ௜ ሻ/ |݇׏|  ൌ   ሺ߲ݔ߲/ݑ௜ ሻ/ |ݑ׏| the unit tangent vector of gradient trajectories 
in the turbulent kinetic energy field (which are identical with those of the ݑ field). It then follows that ܿݏ݋ ߶ ൌ  ܾ௜ݐ௜, 
the cosine of the angle between streamlines and gradient trajectories is obtained from  

ݏ߲/ݑ߲ݑ ൌ cos ߶ ߲݇/߲ܾ   

(3) 

ݏ߲/ݑ߲ ൌ cos ߶   ܾ߲/ݑ߲

where the latter derivatives are the gradient in gradient trajectory direction, thus ߲/߲ܾ ൌ  ܾ௜߲/߲ݔ௜. From eq. 
(3) we conclude that streamlines and gradient trajectories must be perpendicular to each other when intersecting the 
isosurface, as ߲ݏ߲/ݑ ൌ  0 while ߲݇/߲ܾ ്  0 so that cos ߶ ؠ  0 which means that locally on the isosurface the 
instantaneous net convective transport of the turbulent kinetic energy is perpendicular to its diffusive transport. 

BASIC PROPERTIES OF STRAGNATION POINTS: In the following we are interested in the local 
geometry of the isosurface in the vicinity of a stagnation point. Being a local minimum such a point should lie in the 
isosurface, however as it is a critical point of the flow field geometrical features in its vicinity are of particular interest 
and not a-priori clear. Stagnation points have mostly been studied in the context of flow visualization and to determine 
the local topology of the turbulent flow field. In [18] it has been shown based on previous works [18] that there exist 
four different types of stagnation points in incompressible flows (two more types can be identified in compressible 
ones). Without loss of generality let us shift the origin of a local cartesian coordinate system in the stagnation point. 
Then, a linearization of the flow field around the stagnation point yields 

௜ݑ ൎ ௜௝ܣ  ௝ݔ ൅ ܱሺ|ݔ|ଶሻ, (4) 

where ܣ௜௝ ൌ  ௝  denotes the velocity gradient tensor at the stagnation point. The latter can beݔ߲/௜ݑ߲

decomposed as ܣ௜௝  ൌ  ௜ܵ௝  ൅  ௜ܹ௝ into a symmetric ሺ ௜ܵ௝ሻ and an anti-symmetric part ሺ ௜ܹ௝ሻ defined as 

௜ܵ௝  ൌ
1
2

ሺ
௜ݑ߲

௝ݔ߲
൅

௝ݑ߲

௜ݔ߲
ሻ,

 

(5) 

௜ܹ௝  ൌ
1
2

ቆ
௜ݑ߲

௝ݔ߲
൅

௝ݑ߲

௜ݔ߲
ቇ. 

 

 

The three invariants of the tensor ܣ௜௝ can be obtained from the characteristic function of a second order tensor 

and it turns out that one of the latter (its trace) must vanish for incompressible flows. Then the different types of 
stagnation points are characterized by the two remaining invariants ܳ and ܴ and the sign of the determinant ܦ ൌ ܳଷ  ൅
27/4ܴଶ yielding the four different possible types of stagnation points. For details on the characterization see [17]. 

CHARACTERIZATION OF THE ISOSURFACE NEAR STAGNATION POINTS: While the isosurface 
of a turbulent scalar field can be expected to globally posses a fractal dimension in the high Reynolds number [19], it is 
locally diffusion controlled and smooth [20]. However, it remains to clarify the local topology of the surface in the 
vicinity of a stagnation point.     
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Figure  6:  (a)  Local  topology of  the ࢙࢛ ൌ ૙  isosurface  in  the  vicinity of  a  vortex dominated  stagnation point  (green dot).  (b) 
Streamlines passing through the stagnation point color coded with local sign of local acceleration (red: positive, blue: negative) 
along the streamline. 

To this end we expand the ݑ௦-field based on eq. (4) and find  

௦ݑ ൌ
ݑ߲
ݏ߲

 ൌ ௝ݐ 
ݑ߲
௝ݔ߲

 ൌ ௝ݐ௜ݐ
௜ݑ߲

௝ݔ߲
ൌ 0 ൌ ௝ݑ௜ݑ

௜ݑ߲

௝ݔ߲
,

(6) 

where the latter identity is only valid on the isosurface itself and does not allow the treatment of ݑ௦ as a field 
any more. Replacing the velocity field in eq. 6 by its expansion (eq. 4) we obtain 

௦ݑ ൎ ௟ݔ௞ݔ௜௝ܣ௝௟ܣ௜௞ܣ ൌ ௟ݔ௞ݔ௞௟ܤ ൌ 0. (7) 

Due to the symmetry of the last equality (ܤ௞௟ itself is not symmetric) we introduce the symmetric tensor  

෨௞௟ܤ  ൌ
1
2

ሺܤ௞௟ ൅ ௟௞ሻܤ ൌ
1
2

௝௟ܣ௜௞ܣ௜௝ሺܣ ൅ ,௝௞ሻܣ௜௟ܣ
(8) 

to finally obtain  

௟ݔ௞ݔ෨௞௟ܤ ൌ 0. (9) 

 ෨௞௟ can then be diagonalized based on its eigenbasis to show that in the vicinity of a stagnation point theܤ
solution of eq. 9 yields a locally quadric surface. Due to incompressibility at least one (and no more than two) of the 

real eigenvalues of ܤ෨௞௟  must be negative so that only a degenerated quadric surface can be solution to eq. 9, namely 
that of a cone 

൬
෤ଵݔ

ܽଵ
൰

ଶ

൅ ൬
෤ଶݔ

ܽଶ
൰

ଶ

െ ൬
෤ଷݔ

ܽଷ
൰

ଶ

ൌ 0,
(10) 

where we have denoted with ܽଵ … ܽଷ the principle axis of the quadric whose lengths are determined by the 

absolute value of the eigenvalues of the tensor ܤ෩ ௞௟. We thus conclude from the above analysis that at a stagnation point 
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the isosurface containing all local extreme points of the turbulent kinetic energy field posses a singular point at which 
two folds of the surface come infinitesimally close to each other.       

Figure 6(a) shows the ݑ௦ ൌ 0 isosurface in the vicinity of a stagnation point in the fluctuating turbulent 
velocity field. Locally, the surface is clearly a degenerated cone-type quadric as defined by eq. 10 where in the 
stagnation point two folds of the isosurface "touch" each other. Figure 6(b) shows the local flow structure in terms of 
streamlines passing through the stagnation point. The color coding of the streamlines indicates the local flow 
acceleration along the streamline in red ሺݑ௦ ൐ 0ሻ and a local decceleration in blue ሺݑ௦ ൏ 0ሻ. As the isosurface devides 
space into two regions, where in one region ݑ௦ ൐ 0, which corresponds to the volume above and below the stagnation 
point, while in the other one ݑ௦ ൐ 0  which corresponds to the volume between the two folds of the isosurface. 
Following the terminology by Chong [18] this specific type of stagnation point is an unstable-node/saddle/saddle 
(corresponding to the flow behavior in the three eigenplanes) characterized by a negative discriminant ܦ which also 
yields a negative value of the tensor invariant ܳ and a positive value of the tensor invariant ܴ. Such stagnation points 
characterize a locally strain-rate dominated region. 

Figure 7(b) shows again the ݑ௦ ൌ 0 isosurface in the vicinity of a stagnation point which this time corresponds 
to a stable-focus/stretching characterized by positive values of ܦ and ܴ and a negative value of ܴ. Such a stagnation 
point lies in a flow region which is locally dominated by vortex structures. Again, the isosurface is locally a degenerated 
cone-type quadric. 

 

Figure  7:  (a)  Local  topology  of  the ࢙࢛ ൌ ૙ isosurface  in  the  vicinity of  a  vortex  dominated  stagnation point  (green  dot).  (b) 
Streamlines passing through the stagnation point color coded with local sign of local acceleration (red: positive, blue: negative) 
along the streamline. 

CONCLUSION: Different geometrical aspects of turbulent flows have been analyzed in the course of this 
work, namely dissipation elements, streamline segements and stagnation points. An isosurface, namely ݀ݏ݀/ݑ ൌ 0 has 
turned out to be a unifying object of the above geometrical features in the sense that in this surface not only streamline 
segments, but also dissipation elements based on the instantaneous turbulent kinetic energy field begin and end. When 
passing through this surface, all streamlines are locally parallel to each other as based on the continuity equation the 
Gaussian curvature of streamlines vanishes in the isosurface. It could also be shown that the surface comprises all local 
extrema of the turbulent kinetic energy at any instant in time. Among the latter are also stagnation points, which form a 
sub-group of the local minima of the turbulent kinetic energy field, namely all absolute minima with ݑ׏ ൌ ݇׏ ൌ 0. 
These are critical points of the velocity field where all three components vanish simultaneously. The surface could be 
shown to be of a special type in the vicinity of stagnation points where independent of the type of stagnation point two 
folds of the surface touch and the local expansion yields a degenerated cone-type surface.  
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