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ABSTRACT: We investigate the flow around a rotating disk in a cylindrical casing.  The thickness of the 
disk is finite and its radius is smaller than the inner radius of the casing.  Therefore, the flow field has an axial gap and 
the radial gap.  This is more realistic model of fluid machinery than the flow field that has only an axial gap or a 
rotating container.  Because the disk has a finite thickness, Taylor-Couette like flow appears at the radial gap.  The 
study is carried out by the direct numerical simulation based on the Navier-Stokes equations and the equation of 
continuity.  The Reynolds number Re is based on the disk radius and the rotating speed of the disk rim.  When the 
Reynolds number is small, steady Taylor vortices appear at the radial gap.  At Re = 7000, six or seven vortices appear 
around the disk rim.  These vortices make a time variation of torque acting on the disk.  Therefore, this flow type is not 
preferable for the safety operation of fluid machinery.  When the Reynolds number is 8000, small vortices appear 
around the disk rim.  The number of the vortices is about 30.  In this case, flow is stable and no variation of the torque 
appears.  When the flow develops further and the Reynolds number is 12000 or above, the vortices propagate into the 
inner region of the disk and they make a spiral rolls with negative front angle.  We show that five flow patterns emerge.  
From a detail calculation, the critical Reynolds numbers among the appearances of these flow patterns are determined. 

Introduction 

Rotating flows found in hard disk drives and various kinds of fluid machinery are important flows in fluid dynamics, 
and experimental and numerical studies have been carried out1, 2.  In these flows, flow patterns of basic flows, circular 
flows, spiral rolls, turbulent spirals and turbulent flows appear as the Reynolds number increases3. 
The studies on these flows are classified in three categories.  The first is the flow around a rotating disk in a cylindrical 
casing.  The radius of the disk and the inner radius of the casing are almost same.  The axial gap between the disk 
surface and the end wall of the casing is narrow.  This gives a cross flow model.  In this case, Cross et al.4 
experimentally showed the circular rolls, spiral rolls and the spots in the turbulent flow.  The second is the flows in the 
rotating container and the rotating annular cavity.  Lopez et al.5 shows the instabilities in the Bödewat layer on a 
stationary end wall.  Hung et al.6 used the PIV method and measured the core flow around the hub connecting two 
rotating disks.  The third is the flows around a rotating disk with the radial gap as well as the axial gap in a cylindrical 
casing.  Schouveiler et al.7 experimentally showed the effect of the radial gap is large on the flow near the disk rim.  
While these flows give more realistic models of fluid machinery, the studies of these flows are limited and the effects of 
the radial gap and the Reynolds number are not clear. Here, we numerically investigate this third flow. 
When the disk has a finite thickness, Taylor-Couette-like flow appears between the disk rim and the side wall of the 
casing and this originates a new instability of the flow.  We have investigated the effect of this instability by the 
numerical and experimental approaches8, 9.  As the Reynolds number increases, steady Taylor-Couette flow, sickle-like 
vortices, bead-like vortices, spiral rolls appear at the radial gap and around the disk rim.  However the results of our 
studies are a little bit qualitative.  In this paper, we carried out more detail calculation and defined the criterions that 
determine which flow pattern appears in the flow field. 
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Fig.1  Flow field and coordinate system. 

Formulation 

The schematic flow field and the cylindrical coordinate 
system (r, θ, z) are shown in Fig. 1.  The disk is placed at 
the middle of the cylindrical casing and it is rotated by a 
driving shaft.  The z axis is aligned with the driving shaft 
and the origin of the coordinate system is placed at the 
center of the bottom end wall of the casing.  The radius and 
the length of the casing are denoted by rc and hc, 
respectively.  The radius and the thickness of the rotating 
disk are represented by rd and hd, respectively.  The upper 
and lower axial gaps (hu and hl) are identical.  The 
reference length is the radius of the disk and the reference velocity is the azimuthal velocity at the rim of the disk (vd).  
These reference values are used to evaluate the Reynolds number and to make dimensionless quantities.  In out 
experiment, following geometrical values are used: 
          rc = 1.1181,  hc, = 0.3150,  rd = 1.0,   hd = 0.2362,  hu = hl = 0.0394. 
In our experiment8, these values stand for the inner radius of the casing of 142 mm, the length of the casing of 40 mm, 
the disk radius of 127 mm and the disk thickness of 30 mm. 
The governing equations are the equation of continuity and the three-dimensional Navier-Stokes equations, 

0=⋅∇ u  
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where the velocity vector u = (u, v, w)T, t is time, p is 
pressure and Re is the Reynolds number given by vd rd/ν 
(ν is the kinematic viscosity). 
The boundary condition is the no-slip condition on the 
wall.  The flow is at rest in the initial condition and the 
disk suddenly begins to rotate to give a prescribed 
Reynolds number. 
The continuous equations are discretized by the finite 
difference method.  The convection terms are modeled by 
the QUICK method.  The MAC method is used and the 
staggered grid is introduced.  This is helpful to remove 
singularities at the connecting point between the rotating 
driving shaft and the stationary end wall of the casing.  
The representative grid points are 265 in the radial 
direction, 338 in the azimuthal direction and 81 in the 
axial direction.  It was confirmed that these grid points 
are enough to evaluate the flow shown in this paper. 

Steady flow at Reynolds number 6300 

The flow at relatively small Reynolds number of 6300 is 
shown in Fig. 2 and Fig. 3.  Figure 2 shows the contour of 
the axial velocity component shown from z direction.  
The disk is rotating in the counter-clockwise direction.  
At t = 60, the flow is in the developing state.  The well 
developed flow is established at t = 200, that is almost 
axisymmetric. 
Figure 3 represents the contour of the axial velocity 
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Fig. 2  Contour of the axial velocity component in the r-
θ  plane (Re = 6300, z = 0.00984). 

 

t = 60 

t = 200 

Fig. 3  Contour of the axial velocity component in the θ-
z plane in the radial gap (Re = 6300, r = 1.06). 
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component at a fixed radial position of r = 1.06 where is in 
the axial gap.  The horizontal direction is the azimutal angle 
from 0 to 2π, and the vertical direction is the axial direction.  
The well developed flow at t = 200 has variations parallel to 
the azimuthal direction. 
The flows in the r-z plane near the radial gap are shown in 
Fig. 4.  The horizontal direction is the radial direction and 
the vertical direction is the axial direction.  Black lines in 
the figure represent the rotating disk.  In the developing 
flow at t = 60, three main vortices attached with a small 
vortex at the upper end appear.  In the well-developed flow 
at t = 200, steady four vortices appear in the radial gap.  
Boundary layers develop on the rotating disk and the end 
wall of the casing.  Velocity vectors of them are also shown 
in Fig. 4.  These boundary layers are merged and no core 
region is found. 

Sickle-like flow at Reynolds number 
7000 

The flow at Re = 7000 is shown in Figs. 5, 6 and 7.  Figure 
5 represents the contour of the axial velocity component in 
the r-θ plane.  Small vortices appear around the disk rim at 
t = 70.  The number of vortices is about thirty.  We call this 
vortex a bead-like vortex and the flow with bead-like 
vortices a bead-like flow.  At Re = 7000, the bead-like 
flow is not permanent.  The small vortices begin to merge 
with each other and a large vortex named by a sickle 
vortex appears.  The flow with large vortices at t = 230 is 
shown in the right panel of Fig. 5. 
The flows at r = 1.06 are given in Fig. 6.  At t = 70, bead-
like flow appears and the small vortices are confined to the 
one side of the end wall of the cylindrical casing.  
Similarly, while the sickle-like flow with several sickle 
vortices at t = 230 has a larger flow structure than that of 
the bead-like flow, it is not symmetric with respect to the 
axial direction neither.  The vortices only on the one side of 
the casing made an oscillation of the entire flow and the 
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Fig. 4  Contour of the axial velocity component in the r-
z plane (Re = 6300, θ = 0.0). 
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                    t = 70                                 t = 230 

Fig. 5  Contour of the axial velocity component in the r-
θ  plane (Re = 7000, z = 0.00984). 

 

t = 70 

t = 230 

Fig. 6  Contour of the axial velocity component in the θ-
z plane in the radial gap (Re = 7000, r = 1.06).

 

                         radial gap                            radial gap 

            

θ = 0.374 [rad]                     θ = 0.524 [rad] 

Fig. 7  Contour of the axial velocity component in the r-
z plane at two azimuthal positions (Re = 7000, t = 70). 
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torque acting on the disk and the energy in the flow region 
changed with time. 
Figure 7 shows the flows in the r-z plane at different 
azimuthal position.  The time t is 70.  Differing from the 
well developed flow at Re = 6300, three vortices appear in 
the radial gap, and this also suggest the asymmetry of the 
flow.  The flow pattern changes at each azimuthal section.  
In the experiment, the change of flow pattern appears as the 
time variation of the flow structure. 

Bead-like flow at Reynolds number 8000 

When the Reynolds number is 8000, well developed flow 
has a structured pattern.  They are shown in Figs. 8, 9 and 
10.  In this case, well formed bead-like flow appears at the 
early time of the numerical simulation.  Figure 8 shows the 
flows near the two end walls of the cylindrical casing.  
Though the sign of the values of the axial velocity 
component is different at two different z (axial) positions, 
the bead-like flows are found in these figures. 
Figure 9 shows the flows at r = 1.07 (near the center of the 
radial gap) and 1.09 (neat the outer edge of the radial gap) 
in the θ-z plane.  The bead-like vortices appear on both end 
walls of the cylindrical casing.  The strength of the axial 
velocity component is stronger at the outer region than that 
at the middle of the radial gap. 
The flows at two azimuthal sections are shown in Fig. 10.  
The panel at θ = 0.430 [rad] represents the flow including 
the bead-like vortices, and the panel at θ = 0.430 [rad] gives 
the flow pattern between the bead-like vortices.  Two main 
vortices appear in the radial gap.  At   θ = 0.430 [rad], very 
weak flows appear at corners between the side wall and 
upper and lower end wall of the casing.  When we compare 
the flows in Fig. 10 with the flows in Fig. 9, we can say that 
these weak flows correspond to the bead-like vortices. 
Following the movement of the bead-like vortices, the flow 
fluctuates periodically.  The reason why the flow does not 
change to the other mode such as a sickle-like flow is now 
under consideration. 

Bead-like flows with spiral rolls at 
Reynolds number 12000 

When the Reynolds number increases further, spiral rolls 
with negative front angle appear. In out numerical simulation, spiral rolls appear in the flow at Re = 12000.  Figure 11 
shows the flows at z = 0.00984 and z = 0.0374.  The rotating direction of the disk is counter-clockwise.  The flow at z = 
0.00984 is that very close to the stationary end wall casing and it is in the Bödewadt layer.  The axial position at z = 
0.0374 is close to the rotating disk and the flow is in the Ekman layer.  The spiral rolls are well formed in the Bödewadt 
layer.  The front line of the spiral is opposite to the rotating direction of the disk.  Therefore the front angle is negative. 

 

   

               z = 0.0374                           z = 0.278 

Fig. 8  Contour of the axial velocity component in the r-
θ  plane at two axial positions (Re = 8000, t = 200). 

 

r = 1.07 

r = 1.09 

Fig. 9  Contour of the axial velocity component in the θ-
z plane at two positions in the radial gap (Re = 8000, t = 
200). 

 

                         radial gap                            radial gap 

            

θ = 0.430 [rad]                    θ = 0.467 [rad] 

Fig. 10  Contour of the axial velocity component in the r-
z plane at two azimuthal positions (Re = 7000, t = 200). 
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This result coincides with that given experimentally by ref. (3) and (8).  Beside the spiral rolls, bead-like vortices appear 
both in the Bödewadt layer and the Ekman layer. 
The flow structures in the θ-z plane are presented in Fig. 12.  Please note that the r = 0.928 corresponds not in the radial 
gap but on the rotating disk.  Periodical pattern of spiral rolls is found on the disk.  In the radial gap of r = 1.09, bead-
like vortices appear on the both side of the end walls of the casing, though the bead structure is a little bit deformed. 

 

                
             z = 0.00984                           z = 0.0374                         Re = 20000 (radial gap)         Re = 55000 (no radial gap)

Fig. 11  Contour of the axial velocity component in the             Fig. 14  Contour of the axial velocity component in the 
r-θ  plane at two axial positions (Re = 12000, t = 300).              r-θ  plane (z = 0.00984, t = 300). 
 

 

        

r = 0.982                                                                                     r = 0.982 

        

r = 1.09                                                                                       r = 1.09 

Fig. 12  Contour of the axial velocity component in the             Fig. 15  Contour of the axial velocity component in the 
θ-z plane at two radial positions (Re = 12000, t = 300).             θ-z plane at two radial positions (Re = 20000, t = 300). 

 

                         radial gap                            radial gap                                                             radial gap 

                                                       

θ = 0.112 [rad]                    θ = 0.860 [rad]                                                      θ = 0.860 [rad] 

Fig. 13  Contour of the axial velocity component in the               Fig. 16  Contour of the axial velocity component in the
r-z plane at two azimuthal positions (Re = 12000, t = 300).          r-z plane (Re = 20000, t = 300). 
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Fig. 17  Bifurcation diagram of the flow with the Reynolds number. 
 
 
The side flow in Fig. 13 is not much different from that in Fig. 10.  However, the fluctuation of the two main vortices is 
stronger and the disturbances generated by this fluctuation penetrate inward and makes the spiral rolls. 

Spiral rolls at Reynolds number 20000 

When the Reynolds number is 20000, bead-like flow disappears and spiral rolls extend.  The left panel in Fig. 14 gives 
the flow shown from the axial direction.  The spiral rolls have a negative front angle.  The right panel in Fig. 14 is the 
flow when there is no axial gap and the Reynolds number is 55000.  The flow with no axial gap shows the spiral rolls 
with a positive front angle.  This flow is also experimentally found (3), (4).   
The flow in θ-z plane is shown in Fig. 15.  On the rotating disk at r = 0.982, the periodic sections of the spiral rolls 
appear, while the flow in the radial gap (r = 1.09) does not have a well-formed flow structure. 
The flow in the azimuthal section has a very strong unsteady two vortices flow.  These vortices provide much more 
disturbances and clearer spiral rolls in the inner region. 

Bifurcation diagram 

In the above sections, we have shown five flow patterns.  The first (A) is Taylor-Couette flow in the radial gap.  The 
second (B) forms a bead-like flow and then changes to the sickle-like flow.  The third (C) is the bead-like flow 
independent from the time.  The forth (D) is the coexisting flow of the bead-like flow and the spiral rolls with a 
negative front angle.  The fifth (E) is the extended spiral rolls and no well formed bead-like flow appears.  Careful 
calculations confine the critical Reynolds numbers between flow patterns from (A) to (E) within an accuracy of one 
hundred.  As was noted in the section of formulation, the initial state includes the flow at rest in the entire region.  Then 
the disk begins to rotate suddenly to give a prescribed Reynolds number.  The bifurcation diagram is shown in Fig. 17.  
The blue line denotes the lower limit of a flow pattern, and the red line represents the upper limit of a flow pattern.  The 
flow patterns are clear divided by the Reynolds number. 

Conclusion 

The flow around a rotating disk in a cylindrical casing is numerically predicted.  The disk has a finite thickness.  The 
disk radius is smaller than the inner radius of the casing, and the flow configuration has a radial gap as well as an axial 
gap.  In the radial gap, Taylor-Couette like flow appears.  When the Reynolds number is small, Taylor-Couette flow is 
steady.  However, as the Reynolds number increases, the flow in the radial gap begins to oscillate with time.  Then, the 
sickle-like vortices and the bead-like vortices appear.  At much higher Reynolds number, spiral rolls appear on the 
stationary end wall of the casing and at the inner region of the disk.  These spiral rolls have a negative front angle with 
respect to the rotating direction of the disk.  Five flow patterns are found and the critical Reynolds numbers for the 
appearance of these flow patterns are determined.  One main future study is the verification of these flow patterns and 
the critical Reynolds number in experiments.  In this study, only one geometrical configuration is considered and the 
only one situation in that the disk is suddenly spun up is evaluated.  Therefore, the flow patterns different from the ones 
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obtained in the current calculation may be obtained when the geometrical size is changed and the way of the increase of 
decrease of the spinning angular velocity is modified. 
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