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Abstract 

The present work is the research of similarity solution for a one-dimensional strong explosion in the 
perfect gas. The analysis of the equations describing gas-dynamic flow is made in the Lagrangian 
mass coordinates. The calculation results for flows with different symmetry are described. An exact 
analytical solution to the problem on plane and cylindrical geometry is given. 
  
1. Introduction 

The strong explosion theory has arisen from the necessity to describe in the environment the 
distributions of shock waves caused by explosion of charges, having large specific energy both in 
small weight and in volume. This theory was developed in the works of L.I. Sedov, and also G. 
Taylor, K.P. Stanjukovich and J. Neumann. The analytical solution of the appropriate similarity 
Eulerian equations is given in works [1–3]. 
At the same time it is known that consideration of one-dimensional unsteady gas flows of explosive 
type, especially numerical solution of the appropriate gas-dynamic equations is convenient to perform 
using Lagrangian mass coordinates. The Lagrangian description is naturally good for determining 
contact breaks. In this case, it is much easier to examine the kinetics of chemical reactions, processes 
of ionization and recombination in high-temperature products of explosion and the environment [4]. 
Radiation transfer may be also successfully analyzed in such an approach [5–6]. 
The present work contains the analysis of the problem of strong explosion in perfect gases. Its solution 
is considered in the Lagrangian mass coordinates. 

2. Problem statement 

Let us consider a one-dimensional strong explosion in the environment with a constant density 0ρ . 
Gas flow, as is known, is described by conservation laws of mass, momentum, and energy which in 
the Eulerian variables have the following form:  
 equation of continuity: 
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Besides, if the motion in the field of explosion is adiabatic, then the equation is valid 

0P
r

uP
t

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ρ∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ρ∂
∂

γγ
,           (4) 

This equation specifies the constancy of entropy for gas particles. In (1) r  is the space variable, t the 
time, the symmetry factor,  the density,  the pressure,  the mass velocity,  the internal 
energy that is determined by the state equation for a perfect gas with constant adiabatic coefficient : 
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Let energy of explosion be equal to  on the unit of the area in the plane explosion case, on the unit 
of the length for cylindrical symmetry and full energy for spherical geometry. In the case of strong 
explosion the gas pressure in the unperturbed area is negligible in comparison with the pressure behind 
the front of a shock wave. Therefore in the considered problem there are no other dimensional 
parameters, except for  and  (their dimensions are 
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Here the magnitude  is proportional to , and is the coordinate of the shock wave front (SWF). E 0E Fr

EE0 α=             (7) 
Thus, the unique dimensionless coordinate is 
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In such a statement the problem is the similarity case. The external border of the perturbed area is the 
front of a shock wave where the conservation laws hold true: 
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In (9) the subscript F  marks the gas parameters at FSW. The velocity of the shock wave extension  
is defined through the FSW coordinate: 
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Below we shall consider the solution of a given problem in the Lagrangian variables. 

3. Analysis of the Lagrangian equations 

The mass coordinate is determined by the expression 
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If the value m  is calculated from the plane (the axis or the center) symmetry the mass coordinate of a 
point with a given Eulerian coordinate r  is the mass of the gas in the area [0, r ]. The gas dynamics 
equations in the Lagrangian mass variables have the form [7]: 
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The symbol  in (14) - (15) implies the substantive derivative t/ ∂∂ r/ut/ ∂∂+∂∂ . As SWF moves on 
the gas with constant density the mass coordinate of the front according to (11) and (6) is 
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The similarity dimensionless mass coordinate is determined as follows 
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The functions determining gas-dynamic flow can be presented as: 
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The specific volume is the inverse value to ρ : 
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Substituting (17) - (18) into (13) and (14) yields the system of the differential equations for 
dimensionless functions - representatives:  
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Expressions (19) are accordingly the equations of continuity, motion, the equation for mass velocity, 
the conservation law of energy and the requirement of adiabatic flow. 
From equations (9) it is possible to find boundary conditions for similarity functions at SW front 
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Integrating equations (19d) and (19e) in view of boundary conditions (20), we obtain two algebraic 
equations connecting the flow characteristics. The first of them is the law of conservation of energy 
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and the second – the constancy of the entropy of a mass particle behind SWF 
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So, the problem reduces to integration of the system of the equations: 
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with boundary conditions (20). 
As in the considered approximation the internal energy of the gas before the wave front 

according to (5) is equal to zero ( ), the energy of the area entrained in motion is constant and 
equal to the explosion energy . From here we obtain: 
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The last relation with account of (7), (10) defines the constant value of α  from (7) which depends on 
,  and is determined by the gas-dynamic profiles of flow in the area of explosion: γ ν

( )∫ ξ+π⎟
⎠
⎞

⎜
⎝
⎛

+ν+γν
σ

=α ν
1

0

2
2

2 dUV
2

2
)1(

2 ,       (25) 

For the analysis of system (23) in the general case it is necessary to introduce a new function 
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and with the help of two last equations (23) to exclude from the equations the variables V  and η  
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In total, system (23) can reduce to two differential equations 
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where the coefficients  are: c,b,a
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A further analysis is standard. Dividing one equation from (28) by another yields 
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Equation (30) can be simplified if a new variable  is introduced y
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coefficients  are accordingly equal to 3210 d,d,d,d
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If the change in the variable  is made, instead of (32) a more simple equation is obtained: 3/rxy −=
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Solving the last equation allows obtaining the dependence , i.e. . Substituting this 
expression into (28) and integrating these equations determines all functions from the variable . 
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 Plane explosion 
It is seen that equation (35) is complicated in character. However it should not be always solved. In the 
case of a plane explosion ( ) the system of equations (23) becomes essentially simpler. The 
Eulerian coordinate 

1=ν
r  is absent in the equations, and equation (23c) allows calculating the value r . 

Then instead of (23) we have the following 
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Solving quadratic equation (37c), we find the velocity dependence on ξ  and : Z
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The sign minus before the root is chosen to obey the condition 0)0(U = . Further from system (37) - 
(38) it is easy to obtain the equation determining the dependence of one of the functions on the 
similarity coordinate: 
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To simplify the last expression, let us introduce a new variable Ψ  
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The solution of equation (42) subject to boundary conditions (20) takes the form 
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Obviously, expressions (43) hold true at any value of , with the exception of =2, at which the 
exponent  in (43) is the infinity. In this special case, we have 
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Formulas (43)–(44) in parametric form completely determine the solution. Note that it continuously 
depends on the adiabatic coefficient γ  in the vicinity 2=γ . The parameter x  varies in an interval 
[0,1]. The value  corresponds to the symmetry plane, 1x = 0x =  obeys SWF. The Eulerian coordinate 
is determined by integrating equation (19a) 
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It is not difficult to indicate that near the symmetry plane the solution depends on the similarity 
variable as follows: 
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In this case, the values  from (34) have the form: 3210 d,d,d,d

)2(2d),22(2d,6d,2d 3
2

21
2

0 −γ=−γ−γ=γ−=γ−=   (47) 

 5



Accordingly, the coefficients t,s,r  included into equation (32) are equal to 
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After this, it is easy to find a total solution to the problem for the case of cylindrical symmetry: 
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In the case of 2=γ , the following formulas are taken instead of (51) 
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The asymptotic behavior of the gas dynamic profiles near the symmetry axis is as follows 
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 The point explosion 
For a spherical explosion equation (35) can be also presented as 
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However, it is not possible to determine the analytical dependence of the roots  on the value 
of . Therefore, it’s solving and a further analysis should be made numerically. Only in the case of 
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4. Results and discussion 

Some calculation results of a strong one-dimensional explosion in the perfect gas are given below. Fig. 
1 shows the gas-dynamic profiles depending on the Lagrangian mass coordinate for the plane blast. 
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Fig.1 Distributions of density , pressure G π , mass velocity  and Eulerian coordinate η  in the line of U ξ . 

Fig. 2 presents the dependence of the dimensionless parameter α , that determines according to (6)-(7) 
the SWF motion law, on the  γ ( ) 3/23/1
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spherical explosion are shown in figs. 4, 5. 
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The dimensionless functions describing the 
flow of perfect the gas at one-dimensional 
strong explosion in the Eulerian coordinate 
are plotted in fig. 6. 
At last, fig. 7 shows the dependence of the 
values of α  and β  on the 
adiabatic coefficient 

)2/( +νν−α=
γ  and the symmetry 

factor ν . 

5. Conclusion 

Analytical solutions of the gas-dynamics 
equations in the Lagrangian mass coordinates 
that describe the flow of a perfect gas at a 
one-dimensional strong explosion are 
obtained. The analysis of the gas flow for 
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