
Minsk  International  Colloquium  on Physics  of  Shock  Waves,  Combustion,  Detonation                                                                   POIV-2 
and  Non-Equilibrium  Processes,  MIC 2005,  Minsk,  12 – 17  Nov.,  2005 

THE RIEMANN-TYPE SOLUTION FOR NONADIABATIC GAS IN THE 
GRAVITATIONAL FIELD 

A. A. Sokolsky 
The Belarus State University, 220050 Minsk, F.Skoriny, 4, E-mail: sokolan@tut.by 
 

Propagation of nondissipative nonlinear one-dimensional perturbations in homogeneous gas can be 
exactly described by the Riemann solution [1]. In [2] it is shown that Riemann-type solution also 
describes vertical propagation of such perturbations in presence of uniform gravitational field. It is 
essential that solutions presented in [2] need the assumption that not only propagation but also initial 
state of medium are adiabatic.  
 
It is of interest to find exact solution of the one-dimensional hydrodynamic equations for perturbations 
occurring in the mechanically-equilibrium nonadiabatic initial state of stratified gas in gravitational 
field [3]. In this case, it is impossible to use the assumption of barotropy   p = p (ρ)  [4] and, as the 
result, the analysis of system of hydrodynamic equations in the Euler approach becomes complicated. 
It is expedient to use the Lagrange approach at which (instead of the system of equations for pressure  
p, density  ρ  and speed  v ) the closed equations of the second order can be deduced for each of 
variables:  z (a, t),  p (a, t)  and  ρ(a, t),  where  z  and  a  are the Euler and Lagrange coordinates 
respectively. 
 
Let us assume that at the initial moment  
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In the Lagrange approach for adiabatic processes in perfect gas (ideal gas with  
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terminology of [4]) in the one-dimensional case we have 
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If the initial state is mechanically-equilibrium, the relation 0
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thus, from (1), (2) it follows: 
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c .   In a homogeneous gravitational field, i.e. at   g z = const, equation (3) take 

the form (compare with [5]) 
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  and the variable   ξ (a, t) = z (a, t) – a   describes displacement 

of particles of medium.  
 
At the same time for the function  θ(a, t),  directly related to  ξ΄,  p  and  ρ: 
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after differentiation (3) with respect to  a  (at  g z = const), we receive: 
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Now we shall try to find solution at which the Lagrange velocity of propagation of a preset value of 
variables  θ,  ξ΄,  p/po    and  ρ/ρo   depends not only on this value (as in the Riemann wave) but also 
explicitly on the Lagrange coordinate  a.  Thus, we shall search for the first integral of (6) in the form 
of 
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Calculating  
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 by (7) and comparing the result with (6), one can see that (7) will be the first 

integral of equation (6), if the initial state have the constant gradient of temperature  , 

(  is the universal gas constant,  μ  is the molar mass) directed upwards, so this state 
will be not only mechanically-equilibrium, but also convective-stable. Besides, we obtain that 
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As the result, for any of variables 0θ, ξ , / and ρ/ρ0

′ p p , the exact solution (generalized Riemann 

wave) can be deduced. For example, the relation for relative pressure     take 

form:   ,  where  F  is the arbitrary function,    
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Particularly, this solution allows us to find the moment of time and the distance from source, at which 
a shock wave arises, taking into account an influence of gravitation and temperature gradient. 
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