NON-EQUILIBRIUM EFFECTS DURING PLASMA DIAGNOSTICS BY LANGMUIR PROBES

A. Cenian¹, A. Chernukho²

¹ Fluid-Flow Machinery Institute PAN, 14 Fiszera str., 80-952 Gdansk, Poland ²Heat and Mass Transfer Institute NAS Belarus., 15 Brovka str., 220072 Minsk, Belarus

Langmuir probes are standard tools for diagnostic of a low and high temperature plasma. Although initially they were invented to study a low pressure, stable plasma [1], later they were applied for such exotic cases as the plasma of a combustion front [2], in ablation processes [3,4] or in a Tokamak device [5]. Standard theories of Langmuir probes are based on various assumptions, i.e. a collisionless probe-sheath (ion motion determined by electric field), a Boltzmann electron profile ($ne(x) = ne0 \exp[-eU(x)/kTe]$) and a constant electron to the ion temperature ratio, Te/Ti . Some of these assumptions were questioned and non-equilibrium effects were found in the presented work, using the results of Particle-In-Cell Monte Carlo (PIC-MC) simulations of long cylindrical probe immersed in Ar plasma. The applied PIC-MC model was described in ref. [6]. The non-equilibrium effects at the plasma-wall interface were already discussed in our previous report [7].

Fig. 1. Ion (dashed lines) and electron (solid line) thermal energies profiles calculated per 1D. The probe bias $U_p = -20$ V

The case considered here is related to a probe in a plasma under the conditions described by the parameters $r_p \mid \lambda_D \sim 0.26$ and $\lambda_D \mid \lambda_{mfp} \sim 0.04$, where λ_D is the Debye length and λ_{mfp} is the mean free path and $r_p = 313 \ \mu m$. The gas pressure was 1.3 mTorr and the ions were supposed to be in equilibrium with the gas (room) temperature T = 0.025 eV. The charged particle density (in the bulk plasma), [Ar⁺] = 7.15 \times 10^7 cm⁻³ and the electron temperature, $T_e = 1.9 \ eV$. Taking into account that the gas density (at room temperature) is of the order of $4.3 \times 10^{13} \ m^{-3}$, the degree of ionisation α is about 2×10^{-6} and λ_D is 1.21 mm under the present conditions.

Figure 1 presents the profiles of thermal energy of electrons (solid line) and ions (dashed lines) calculated per 1 degree of freedom. In the case of ions, we have separated the thermal energy into two parts: (a) E_z , related to the axial symmetrical z-direction and $2E_{\perp}$ related to the motion in the 2D manifold perpendicular to the z-axis. It is clearly seen that the ion thermal energy is not equilibrated and E_z is significantly (~3 times) lower than E_{\perp} . This indicates that under considered conditions,

collision processes are not efficient enough to couple the ion thermal-motion in the respective directions. The non-equilibrium between the electron and ion thermal energies seen in Fig. 1. is well known and understood, taking into account the difference in masses and mobilities.

Figure 2 presents the non-equilibrium ion speed distributions, for speed related to the mentioned above 2D manifold.

Fig. 2. Calculated ion 2D speed distributions at the 5-th, 10-th and 15-th grid elements for a probe bias $U_p = -20$ V. The velocity is related to that corresponding to the probe-attraction energy, eU_p ; and the distribution is normalised to 1. The vertical dashed lines represent the velocities corresponding to the electric field potential in each grid

Acknowledgements

This work has been done in frame of the Polish – Belarusian joint research project.

References

- [1] Mott H, Langmuir I. (1926) Phys. Rev. 28, p. 27.
- [2] Cenian A, Labuda S.A, Bellenoue M., Leys C. (2004) Khimicheskaya Fizika 23, No. 8, p. 37.
- [3] Ding G, Scharer J.E., Kelly K.L. (1998) J.Appl.Phys. 84, p. 1236.
- [4] Jadraque M., Martín M., Santos M., Díaz L., Sawczak M., Cenian A., Sliwinski G. (2005) to be published in Journal of Physics: Conference Series.
- [5] Rahbarnia K., Greiner F., Mahdizadeh N., Stroth U. (2004) The second German-Polish Conference on Plasma Diagnostics for Fusion and Applications, Cracow, Poland, Abstract, Oral 07.
- [6] Cenian A., Chernukho A., Bogaerts A., Gijbels R., Leys C. (2005) J.Appl.Phys. 97 p.123.
- [7] Cenian A., Chernukho A. (2004) International Workshop "Nonequilibrium Processes in Combustion and Plasma Based Technologies, Minsk, Belarus, Contributed Papers p. 37.