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A dense solid particle-fluid mixture consists of a large volume fraction of solid particles immersed in a 

dense fluid.  Detonation in a liquid explosive containing a packed bed of fine metal particles serves as a good 
example for elucidating the fundamental problems of detonation and subsequent supersonic heterogeneous flow 
in a dense solid particle-fluid mixture.  This paper reviews some of these problems from authors’ own studies.  

Theoretical models for detonation in a solid particle-fluid system have mostly been based on two-phase 
fluid dynamics models taking mass, momentum and heat transfer between the phases as well as dynamic 
particle compaction into consideration.  A frozen shock interaction is often assumed in which solid particles are 
not accelerated as the leading shock front crosses the particles.  Behind the shock front, a drag force is assumed 
to determine the momentum transfer between the fluid phase and the particles.  While the assumption of a 
frozen shock interaction has proven adequate for detonation in solid particle-gas flows, it could fail for 
detonation in condensed matter containing metal particles when the shock-particle interaction time is 
comparable to the velocity relaxation time related to the drag.  The liquid loses momentum during the shock-
particle interaction if the reaction time of the metal particles is larger than the shock interaction time.  Figure 1 
shows that the post-shock velocity for aluminum particles achieved 70-80 % of the value of the shocked liquid 
velocity.  For an explosive density from 1-1.8 g/cm3 and a wide range of metal particles including magnesium, 
beryllium, aluminum, nickel, tungsten and uranium, it was found that the particle velocity after the shock 
crosses the particle was a strong function of the initial density ratio of explosive to metal.  Momentum transfer 
during the shock interaction together with that behind the shock front was found to be responsible for the 
detonation velocity deficit observed in experiments.  While the momentum loss desensitizes the detonation 
initiation, the shock interaction with particles also generates hot spots to increase the detonation sensitivity.  
Experiments showed that detonation propagated in a 48 mm PVC tube filled with liquid isopropyl nitrate (IPN) 
containing packed 100 nm aluminum particles, while it failed to propagate in a 310 mm PVC tube filled with 
the neat IPN.  Depending on the choice of particles and liquid, the failure diameter of a solid particle-liquid 
system can be either larger or smaller than that of the liquid itself. 
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Fig. 2 Al particle ignition in cylindrical charges of 
sensitized NM-packed Al particles in a glass tube 

Fig. 1 Al particle velocity subjected to 101.3 kbar 
shock in a 1 g/cm3 liquid-Al particle system 

 
 

 
For this kind of heterogeneous system, significant metal particle combustion takes place after the liquid 

detonation zone if the liquid reaction time is smaller than the characteristic particle reaction time.  In this case, 
a second critical charge diameter was identified, that is, the critical diameter for the particle ignition (CDPI) in 
the detonation products, in which the residence time of the particles is sufficient to heat the particles to burn 
and overcome the quenching effect of the unsteady expansion of the detonation products (Fig. 2).  The CDPI 
was found to be a function of particle reactivity and morphology or size, but also of the oxidizing gases present 
in the detonation products.  For some metal particles, there appears to exist an upper limit of CDPI, such that 
for charges larger than that, the energy-scaled blast arrival time, peak pressure and positive impulse collapse 
within a degree of scatter, regardless of the changes in particle size and shape.  The scatter band is inherent to 



 

the multi-length-scale energy release process of particle combustion.  For charges smaller than the upper limit 
of CDPI but larger than a lower limit, the particle combustion contributes to the blast in various extents. 

By choosing the solid particles and liquid, the momentum and heat loss from the liquid and its detonation 
products to the particles can be regulated within the detonation zone to satisfy the necessary conditions for a 
weak detonation solution, while various solutions can be realized by controlling the late particle reaction to 
meet the rear flow conditions behind the detonation zone.  In related experiments, in which particles were 
dispersed in a tube containing a combustible gas which was then detonated, two types of double-front weak 
detonation waves were identified.  The type-I solution was characterized by a two-shock structure where the 
second shock behind the detonation zone has the same velocity as the leading shock.  In the type-II solution, 
the second shock receded from the detonation zone to produce an ever-widening region of uniform supersonic 
flow between the end of the detonation zone and this shock (Fig. 3).  The two types of weak detonation waves 
can propagate in micrometric aluminum powder dispersed in detonation products with the presence of oxygen, 
water vapor, carbon dioxide, but propagation is unlikely in detonation products dominated by carbon 
monoxide.  By decreasing the heat release rate of particles, the type-I double-front detonation was changed to 
the type-II detonation, in which the second shock recedes with weaker shock strength with a further decrease in 
the heat release rate of particles. 

         
  Fig. 3 Type-II double-front detonation 
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