
 

ISFV15-053-S20

15th International Symposium on Flow Visualization 
June 25-28, 2012, Minsk, Belarus

 

 

ACCELERATION OF SOME PRE- AND POSTPROCESSING 
ALGORITHMS FOR CFD DATA ON 3-D UNSTRUCTURED GRIDS 

PETER VOINOVICH 

The 3-D unstructured grids based on tetrahedral grid elements are widely used in CFD simulations for 
decades. The modern computer hardware offers resources sufficient to deal with the grids containing 
many tens or even hundreds of millions of the grid objects N (grid nodes, tetrahedra, triangular faces, 
edges) using common personal computers, and several orders of magnitude more using powerful 
computer installations. Some intuitive algorithms for pre- and/or postprocessing of the grid and CFD data 
result in computational complexity of O(N2), which makes impractical their application to the large grids. 
Here belongs creation of data sets for grid edges or faces from the data base for tetrahedra referring to the 
grid nodes as their vertices. Extraction of triangular domain boundary faces (surface triangulation) from a 
nodal-tetrahedral data base represents another typical example. This can be done using a temporary data 
set for all the triangular faces of the grid tetrahedra. For every tetrahedron, each of its 4 faces is compared 
to the existing faces in the current data set: if the face already exists, it is marked as an internal face of the 
computational domain, if not – the face is added to the data set. Finally, all the unmarked faces belong to 
the domain boundary, as they were encountered only once, in contrast to the internal faces which separate 
two adjacent tetrahedra. The above algorithm has a complexity of O(Ntetrahedra*Nfaces), i.e. O(N2). 
This makes it extremely inefficient in postprocessing, especially when an animated image is created from 
the data on a grid which varies in time, as in the case of adaptively refined grids applied to a transient 
problem. Hash-indexing the faces can essentially reduce the number of comparisons for each face to be 
tested. Several types of hash functions and hash tables were implemented. A drastic improvement in 
computational efficiency was achieved using a three-dimensional hash table and indexing the faces 
according to the Cartesian coordinates of their centers. However, even better result was obtained using a 
one-dimensional hash table and a hash function based on the numbers of the grid nodes corresponding to 
the face vertices. This reduced the computational complexity of the above algorithm to O(Ntetrahedra). 


