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Granular matter is ubiquitous in technological applications, including solid fuel, reactants in 

industrial chemical reactors, structural medium or its component in construction and engineering. 

Simulations of granular matter based on discrete approaches usually yield the parameters of 

individual particles, e.g., temperatures, chemical composition etc., together with particle positions 

and momenta. On the other hand, macroscopic properties of the bulk matter are more easily 

observed experimentally. Transfer from the microscopic (particle scale) properties to macroscopic 

characteristics (e.g., temperature distribution in packed beds) involves emergence of localised 

groups of particles having similar characteristics. An example application is appearance of 

temperature inhomogeneities (“hot spots”) in grate furnaces and packed bed reactors [1,2]. 

Having the data of individual particles (e.g., from discrete element simulations), the 

interactions and similarities or dissimilarities between the neighbouring particles can be represented 

as a graph, where the graph vertices represent the particles and the graph edges represent the 

relations between the nearest particles. Localised groups of particles in such a graph will appear as 

groups of vertices having denser connections among them compared to the rest of the graph. 

Identification of groups of densely connected vertices in graphs is known as the “community 

detection” problem [3]. Here, we present a sample application of this approach for grouping the 

particles in a packed bed on a moving grate based on the particle temperature. 

We consider a set of Np=1000 particles distributed on a moving grate (Fig. 1); initially, there 

are three values of the temperature: 398.33 K, 398.92 K, 423.32 K. 

 

 

 
 

Fig. 1. Distribution of particles on a moving grate at the initial time t=0 s (above) and the final time t=600 s (below). 

For brevity, only the particles are shown, but not other structural elements. Particles of different temperatures are shown 

in different colors. 
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The particle bed is exposed to thermal radiation from above. As the particles move, their 

temperature distribution changes. This simulated process lasts for 600 s. The simulation details are 

described elsewhere [4]. The graph of temperature relations between the neighbouring particles is 

constructed with the edge weights defined as 

 

  (1) 

 

where Ti is temperature of the i-th particle. The particles i,j are considered in contact (and 

consequently connected by a graph edge) if   

, where xi is the i-th particle position, ri  is its radius, and an “extension 

factor” fr=1.10 was used in order to eliminate the effect of spurious contacts appearing and 

disappearing as the particles move with respect to each other. For the resulting graph, we apply a 

number of known community detection algorithms: Edge betweenness [5], Fast greedy [6,7], Label 

propagation [8], Leading eigenvector [9], Spin glass [10], Walk trap [11]. All these algorithms are 

implemented in the igraph software library [12]. 

The resulting groups of particles at the final time identified by different algorithms are shown 

in Fig. 2. 
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Fig. 2. Particles grouped by their temperatures using different algorithms, as indicated below the respective pictures. 

Particles of different temperatures are shown in different colors, analogously to Fig. 1. The groups are outlined by 

dashed polygons, obtained by connecting the centers of outer particles of each group. 

 

As seen from Fig. 2, there are notable differences between the results produced by different 

algorithms. It is known that the precise identification of communities in graphs is a NP-complete 

problem, therefore, the obtained results are approximate and should be selected based on the 

specific problem under consideration [13]; the definition of the group is application domain specific 

as well. For the task presented here, it is reasonable to define a group as a localised cluster of 

particles having similar characteristics, i.e., the standard deviation of the particle parameter under 

consideration within a group should be smaller than that within the total particle set. Fig. 3 shows 

the evolution of the relative mean standard deviation of the temperatures within the detected groups. 

 

 
Fig. 3. Relative mean standard deviations of particle 

temperatures in the detected groups by different 

algorithms, averaged over all groups weighted by the 

group size (i.e., number of particles in the respective 

group), at different times. The overall relative mean 

standard deviation for all the particles is shown by solid 

line.  

 

 

 

 

 



4 

 

From the results presented in Fig. 2, the “label propagation” algorithm produces the most 

overclusterized partition, i.e., many small clusters with small standard deviations of the particle 

parameters within the clusters. The overclusterization can be reduced by merging contacting similar 

clusters (two clusters are considered in contact if any particles contained in these different clusters 

are in contact.), thereby preserving small values of the deviations of particle parameters within the 

clusters. The merging algorithm thus proceeds as follows: 

1. calculate the mean standard deviation of the particle characteristics of interest 

(temperature in the considered case) in each cluster and make neighbour list of the clusters; 

2. identify independent pairs of contacting clusters that have to be merged, according to a 

certain criterium. “Independent pairs” means that each cluster that could be merged is contained in 

only one such pair; 

3. the pairs of clusters selected in the above step are merged — the neighbour list and 

particle community memberships are updated accordingly and the mean standard deviations for the 

new clusters are recalculated; 

4. the process is repeated until there are no more pairs of clusters left to be merged. 

The criterium for merging should be defined appropriately. In the current case, the contacting 

clusters Si and Sj were merged if 

 

, (2) 

where σ(Si) is the mean standard deviation of the parameter (temperature in this case) of the 

particles contained in Si, and fσ is a certain factor. In order to reduce the influence of numerical 

errors when calculating the mean standard deviations of clusters of particles having similar 

parameters, an additional constant ε is addedd to the merge criterion function, because in cases 

when the standard deviations of the cluster pairs are close to zero, comparison of these values 

becomes unreliable; in the cases described here, the following values of these parameters were 

used: fσ=1.0, ε=10
−10

. The resulting partition is shown in Fig. 4. 

 

 

 

 
 
Fig. 4. Particles grouped by their temperatures using the label propagation algorithm and then applying an additional 

postprocessing algorithm. 

 

Since the label propagation algorithm is nondeterministic, a series of 1000 runs was 

performed for the same input data, i.e., distribution of the particle temperatures at t=600 s, shown in 

Fig. 1. The statistics of partitions of the series obtained by applying the label propagating algorithm 

and then the merging algorithm described above is presented in Table 1. 

 
Table 1. Statistics of the partitions obtained by subsequent application of the label propagation algorithm and then 

merging the clusters, in a series of 1000 runs. 

Parameter Minimum value Maximum value 

Average cluster size 27.8 90.9 

Relative σ(T) in clusters 0.187 0.251 
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 In conclusion, we have demonstrated the applicability of the community detection approach 

for identification of groups of particles with similar characteristics in granular matter. As a sample 

application, we examined the temperature distribution in a packed bed of particles on a moving 

grate, such as used in industrial furnaces. Even though different algorithms produce, in general, 

noticeably different results, usable data can still be extracted by additional postprocessing of the 

results. 
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